Hypothesis: Natural or engineered colloidal particles are often non-spherical in shape. In contrast to the widely-used "homogeneous sphere" assumption, the non-spherical particle shape is expected to alter particle-fluid-surface interactions, which in turn affect particle transport and retention.
Experiments And Simulations: Polystyrene microspheres were stretched to rod-shaped particles of two aspect ratios (2:1, 6:1).
Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively.
View Article and Find Full Text PDFDespite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions.
View Article and Find Full Text PDFColloid release from surfaces in response to ionic strength and flow perturbations has been mechanistically simulated. However, these models do not address the mechanism by which colloid attachment occurs, at least in the presence of bulk colloid-collector repulsion (unfavorable conditions), which is a prevalent environmental condition. We test whether a mechanistic model that predicts colloid attachment under unfavorable conditions also predicts colloid release in response to reduced ionic strength (IS) and increased fluid velocity (conditions thought prevalent for mobilization of environmental colloids).
View Article and Find Full Text PDFThis article concerns reading the nanoscale heterogeneity thought responsible for colloid retention on surfaces in the presence of energy barriers (unfavorable attachment conditions). We back out this heterogeneity on glass surfaces by comparing mechanistic simulations incorporating discrete heterogeneity with colloid deposition experiments performed across a comprehensive set of experimental conditions. Original data is presented for attachment to soda lime glass for three colloid sizes (0.
View Article and Find Full Text PDFWe collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters.
View Article and Find Full Text PDFMany mechanisms of colloid retention in porous media under unfavorable conditions have been identified from experiments or theory, such as attachment at surface heterogeneities, wedging at grain to grain contacts, retention via secondary energy minimum association in zones of low flow drag, and straining in pore throats too small to pass. However, no previously published model is capable of representing all of these mechanisms of colloid retention. In this work, we demonstrate that incorporation of surface heterogeneity into our hemispheres-in-cell model yields all experimentally observed non-straining retention mechanisms in porous media under unfavorable conditions.
View Article and Find Full Text PDFThe vast majority of colloid transport experiments use granular porous media with narrow size distribution to facilitate comparison with colloid filtration theory, which represents porous media with a single collector size. In this work we examine retention of colloids ranging in size from 0.21 to 9.
View Article and Find Full Text PDFLaboratory column experiments for colloidal transport and retention are often carried out with flow direction oriented against gravity (up-flow) to minimize retention of trapped air. However, the models that underlie colloidal filtration theory (e.g.
View Article and Find Full Text PDFIn this paper we present direct observations of retention of colloids in granular porous media over a large size range (0.21-9.0 microm) and generalize the significance of attachment in grain to grain contacts and attachment on the open surface as a function of colloid:collector ratio.
View Article and Find Full Text PDF