ACS Appl Mater Interfaces
April 2024
As transient electronics continue to advance, the demand for new materials has given rise to the exploration of conducting polymer (CP)-based electronic materials. The big challenge lies in balancing conductivity while introducing controlled degradable properties into CP-based transient materials. In response to this, we present in this work a concept of using conducting polymers attached to an enzymatically biodegradable biopolymer to create transient polymer electronics materials.
View Article and Find Full Text PDFThe successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N)-functionalized poly(3,4-ethylenedioxythiophene) () films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure or pure , and last, were formed by co-polymerizing a 1:4 mixture of N-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry.
View Article and Find Full Text PDFHere, the synthesis of a novel poly(pyrrole phenylene) (PpyP) that is both modular in ways of functionalization and soluble in organic solvents is reported, and therefore solution processable. This is achieved through the functionalization of the side-chain substituents in pyrrole phenylene (PyP) repeating units. Butyl acrylate brushes are first grafted through atom transfer radical polymerization from one type of PyP, followed by oxidative chemical co-polymerization of the grafted PyP with a PyP bearing different side chains-either an azide or a methoxy moiety, resulting in a soluble PpyP where solubility is not dopant-dependent.
View Article and Find Full Text PDFThis research focuses on the design of biocompatible materials/scaffold suitable for use for tissue engineering. Porous fiber mats were produced through electrospinning of polythiophene phenylene (PThP) conducting polymers blended with poly(lactide- co-glycolic acid) (PLGA). A peptide containing an arginylglycylaspartic acid (RGD) fragment was synthesized using solid phase peptide synthesis and subsequently grafted onto a PThP polymer using azide-alkyne "click" chemistry.
View Article and Find Full Text PDFA highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached.
View Article and Find Full Text PDFThe relationships between physical fitness, activity, and self-perceived fitness in adolescents in Hong Kong were investigated. Regular physical activity patterns, self-perceptions of fitness, and health-related physical fitness were measured in 201 secondary school students (M age = 13.8 yr.
View Article and Find Full Text PDF