Publications by authors named "Eddie Te Lintelo"

Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.

View Article and Find Full Text PDF

Coronaviruses express two very large replicase polyproteins, the 16 autoproteolytic cleavage products of which collectively form the membrane-anchored replication complexes. How these structures are assembled is still largely unknown, but it is likely that the membrane-spanning members of these nonstructural proteins (nsps) are responsible for the induction of the double-membrane vesicles and for anchoring the replication complexes to these membranes. For 3 of the 16 coronavirus nsps-nsp3, nsp4, and nsp6-multiple transmembrane domains are predicted.

View Article and Find Full Text PDF

Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA).

View Article and Find Full Text PDF

To study the process of spike (S)-receptor interaction during coronavirus entry, we evaluated the contributions of mutations in different regions of the murine hepatitis virus (MHV) S protein to natural receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (CEACAM1a) dependence and to the acquisition of extended host range. Extended-host-range variants of MHV strain A59 were previously obtained from persistently infected cells (J. H.

View Article and Find Full Text PDF

Only a relatively few mutations in its spike protein allow the murine coronavirus to switch from a murine-restricted tropism to an extended host range by being passaged in vitro. One such virus that we studied had acquired two putative heparan sulfate-binding sites while preserving another site in the furin-cleavage motif. The adaptation of the virus through the use of heparan sulfate as an attachment/entry receptor was demonstrated by increased heparin binding as well as by inhibition of infection through treatment of cells and the virus with heparinase and heparin, respectively.

View Article and Find Full Text PDF

We describe a three-color flow cytometry assay for the detection of virus-specific CD4+ and CD8+ T cells in the cat. The assay is based upon detection of intracellular TNFalpha using the cross-reactive mAb 6401.1111, raised against the human cytokine.

View Article and Find Full Text PDF

To enhance the efficacy of a DNA vaccine against pseudorabies virus (PRV), we evaluated the adjuvant properties of plasmids coding for gamma interferon or interleukin-12, of CpG immunostimulatory motifs, and of the conventional adjuvants dimethyldioctadecylammonium bromide in water (DDA) and sulfolipo-cyclodextrin in squalene in water. We demonstrate that a DNA vaccine combined with DDA, but not with the other adjuvants, induced significantly stronger immune responses than plasmid vaccination alone. Moreover, pigs vaccinated in the presence of DDA were protected against clinical disease and shed significantly less PRV after challenge infection.

View Article and Find Full Text PDF

Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was evaluated. The membrane (M) and nucleocapsid (N) proteins were chosen as antigens, because antibodies to the spike (S) protein of FIP virus (FIPV) are known to precipitate pathogenesis.

View Article and Find Full Text PDF