Publications by authors named "Eddie Sullivan"

Article Synopsis
  • * SAB-163 is a new therapeutic treatment developed from transchromosomic bovine plasma, showing strong effectiveness against multiple hantavirus strains and extended bioavailability in animal models.
  • * The treatment has demonstrated protective effects in hamsters when administered around the time of exposure and is now ready for phase 1 clinical trials after passing safety and efficacy tests.
View Article and Find Full Text PDF

Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. An initial concern was the potential for vaccine- or antibody-dependent enhancement (ADE) of disease as had been reported with other coronaviruses. To evaluate this, we first developed a ferret model by exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral/ocular) or inhalation using a small particle aerosol.

View Article and Find Full Text PDF

Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform.

View Article and Find Full Text PDF
Article Synopsis
  • * The human monoclonal antibody 38C2, derived from this system, targets H1 hemagglutinins and shows significant antibody-dependent cellular cytotoxicity (ADCC), but does not neutralize the H1N1 virus.
  • * Further research highlights that 38C2 binds to a conserved part of the H1N1 virus and exhibits a unique way of activating immune responses, suggesting its potential as a treatment for influenza in humans.
View Article and Find Full Text PDF

Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made.

View Article and Find Full Text PDF

Passive antibody immunotherapeutics directed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are promising countermeasures for protection and treatment of coronavirus disease 2019 (COVID-19). SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) can impact the clinical efficacy of immunotherapeutics. A fully human polyclonal antibody immunotherapeutic purified from plasma of transchromosomic (Tc) bovines hyperimmunized with SARS-CoV-2 WA-1 spike (SAB-185) is being assessed for efficacy in a phase 2/3 clinical trial when different circulating SARS-CoV-2 variants predominated.

View Article and Find Full Text PDF

Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 and the protective efficacy of passive SAB-185 antibody (Ab) transfer .

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with amino-acid substitutions and deletions in spike protein (S) can reduce the effectiveness of monoclonal antibodies (mAbs) and may compromise immunity induced by vaccines. We report a polyclonal, fully human, anti-SARS-CoV-2 immunoglobulin produced in transchromosomic bovines (Tc-hIgG-SARS-CoV-2) hyperimmunized with two doses of plasmid DNA encoding the SARS-CoV-2 Wuhan strain S gene, followed by repeated immunization with S protein purified from insect cells. The resulting Tc-hIgG-SARS-CoV-2, termed SAB-185, efficiently neutralizes SARS-CoV-2, and vesicular stomatitis virus (VSV) SARS-CoV-2 chimeras .

View Article and Find Full Text PDF

Influenza remains a global health risk and challenge. Currently, neuraminidase (NA) inhibitors are extensively used to treat influenza, but their efficacy is compromised by the emergence of drug-resistant variants. Neutralizing antibodies targeting influenza A virus surface glycoproteins are critical components of influenza therapeutic agents and may provide alternative strategies to the existing countermeasures.

View Article and Find Full Text PDF

We explored an emerging technology to produce anti-Hantaan virus (HTNV) and anti-Puumala virus (PUUV) neutralizing antibodies for use as pre- or post-exposure prophylactics. The technology involves hyperimmunization of transchomosomic bovines (TcB) engineered to express human polyclonal IgG antibodies with HTNV and PUUV DNA vaccines encoding GG glycoproteins. For the anti-HTNV product, TcB was hyperimmunized with HTNV DNA plus adjuvant or HTNV DNA formulated using lipid nanoparticles (LNP).

View Article and Find Full Text PDF

The use of nucleic acid as a drug substance for vaccines and other gene-based medicines continues to evolve. Here, we have used a technology originally developed for mRNA in vivo delivery to enhance the immunogenicity of DNA vaccines. We demonstrate that neutralizing antibodies produced in rabbits and nonhuman primates injected with lipid nanoparticle (LNP)-formulated Andes virus or Zika virus DNA vaccines are elevated over unformulated vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered that ZIKV-specific human polyclonal antibodies, produced in transchromosomal bovines, show significant protection against ZIKV in knockout golden Syrian hamsters, both before and after infection.
  • * The study suggests that these antibodies could be a rapid and effective way to combat Zika virus infections, showing promise as a treatment and prevention strategy in small animal models.
View Article and Find Full Text PDF

To address the unmet needs for human polyclonal antibodies both as therapeutics and diagnostic reagents, building upon our previously established transchromosomic (Tc) cattle platform, we report herein the development of a Tc goat system expressing human polyclonal antibodies in their sera. In the Tc goat system, a human artificial chromosome (HAC) comprising the entire human immunoglobulin (Ig) gene repertoire in the germline configuration was introduced into the genetic makeup of the domestic goat. We achieved this by transferring the HAC into goat fetal fibroblast cells followed by somatic cell nuclear transfer for Tc goat production.

View Article and Find Full Text PDF

Antibody therapy has been used to treat a variety of diseases and the success of ZMapp and other monoclonal antibody-based therapies during the 2014-2016 West African Ebola outbreak has shown this countermeasure can be a successful therapy for Ebola hemorrhagic fever. This study utilized transchromosomal bovines (TcB) vaccinated with a DNA plasmid encoding Ebola virus glycoprotein sequence to produce human polyclonal antibodies directed against Ebola virus glycoprotein. When administered 1 day postinfection, these TcB polyclonal antibodies provided partial protection and resulted in a 50% survival rate following a lethal challenge of Ebola virus Makona in rhesus macaques.

View Article and Find Full Text PDF

Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants.

View Article and Find Full Text PDF

Background: Middle East respiratory syndrome (MERS) is a severe respiratory illness with an overall mortality of 35%. There is no licensed or proven treatment. Passive immunotherapy approaches are being developed to prevent and treat several human medical conditions where alternative therapeutic options are absent.

View Article and Find Full Text PDF

For decades, intravenous immunoglobulin (IVIg) has provided safe and effective therapy for immunodeficient patients. This proof-of-principle study describes a novel approach to generate personalized IVIg for chronic, antibiotic-resistant infection in real time.

View Article and Find Full Text PDF

Zika virus (ZIKV) is rapidly spreading throughout the Americas and is associated with significant fetal complications, most notably microcephaly. Treatment with polyclonal antibodies for pregnant women at risk of ZIKV-related complications could be a safe alternative to vaccination. We found that large quantities of human polyclonal antibodies could be rapidly produced in transchromosomal bovines (TcB) and successfully used to protect mice from lethal infection.

View Article and Find Full Text PDF

Clostridium difficile is the number one cause of nosocomial antibiotic-associated diarrhea in developed countries. Historically, pathogenesis was attributed two homologous glucosylating toxins, toxin-A (TcdA) and toxin-B (TcdB). Over the past decade, however, highly virulent epidemic strains of C.

View Article and Find Full Text PDF

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV.

View Article and Find Full Text PDF

Polyclonal antibodies, derived from humans or hyperimmunized animals, have been used prophylactically or therapeutically as countermeasures for a variety of infectious diseases. SAB Biotherapeutics has successfully developed a transchromosomic (Tc) bovine platform technology that can produce fully human immunoglobulins rapidly, and in substantial quantities, against a variety of disease targets. In this study, two Tc bovines expressing high levels of fully human IgG were hyperimmunized with a recombinant glycoprotein (GP) vaccine consisting of the 2014 Ebola virus (EBOV) Makona isolate.

View Article and Find Full Text PDF

As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study.

View Article and Find Full Text PDF

DNA vaccination of transchromosomal bovines (TcBs) with DNA vaccines expressing the codon-optimized (co) glycoprotein (GP) genes of Ebola virus (EBOV) and Sudan virus (SUDV) produce fully human polyclonal antibodies (pAbs) that recognize both viruses and demonstrate robust neutralizing activity. Each TcB was vaccinated by intramuscular electroporation (IM-EP) a total of four times and at each administration received 10 mg of the EBOV-GPco DNA vaccine and 10 mg of the SUDV-GPco DNA vaccine at two sites on the left and right sides, respectively. After two vaccinations, robust antibody responses (titers > 1000) were detected by ELISA against whole irradiated EBOV or SUDV and recombinant EBOV-GP or SUDV-GP (rGP) antigens, with higher titers observed for the rGP antigens.

View Article and Find Full Text PDF

Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle.

View Article and Find Full Text PDF

Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS).

View Article and Find Full Text PDF