Traditional leukocyte adhesion assays have provided significant insight into the mechanisms of leukocyte rolling in part through the use of homogeneously coated surfaces. These assays typically involve protein coating of glass coverslips or plastic petri dishes applied via a static drop of protein solution. With this approach, it is difficult to spatially control the location of proteins to fabricate surface-bound protein gradients that mimic in vivo situations.
View Article and Find Full Text PDFMicrofluidic cell adhesion assays have emerged as a means to increase throughput as well as reduce the amount of costly reagents. However as dimensions of the flow chamber are reduced and approach the diameter of a cell (D(c)), theoretical models have predicted that mechanical stress, force, and torque on a cell will be amplified. We fabricated a series of microfluidic devices that have a constant width:height ratio (10:1) but with varying heights.
View Article and Find Full Text PDF