Wetland plants tolerate potentially hazardous metals through a variety of strategies, including exclusion or accumulation. Whether plants sequester metals and where they store them in their tissues is important for understanding the potential role of plants as remediators or vectors of metals to terrestrial food webs. Here we evaluate metal sequestration in Great Salt Lake wetlands for one invasive (Phragmites australis; phragmites) and three native plant species, i.
View Article and Find Full Text PDFBiodiversity is declining at an unprecedented rate, highlighting the urgent requirement for well-designed protected areas. Design tactics previously proposed to promote biodiversity include enhancing the number, connectivity, and heterogeneity of reserve patches. However, how the importance of these features changes depending on what the conservation objective is remains poorly understood.
View Article and Find Full Text PDFFuture climate changes are predicted to not only increase global temperatures but also alter temporal variation in temperature. As thermal tolerances form an important component of a species' niche, changes to the temperature regime have the capacity to negatively impact species, and therefore, the diversity of the communities they inhabit. In this study, we used protist microcosms to assess how mean temperature, as well as temporal variation in temperature, affected diversity.
View Article and Find Full Text PDFAs a result of their extensive home ranges and slow population growth rates, predators have often been perceived to suffer higher risks of extinction than other trophic groups. Our study challenges this extinction-risk paradigm by quantitatively comparing patterns of extinction risk across different trophic groups of mammals, birds, and reptiles. We found that trophic level and body size were significant factors that influenced extinction risk in all taxa.
View Article and Find Full Text PDFCrucial to the successful conservation of endangered species is the overlap of their ranges with protected areas. We analyzed protected areas in the continental USA to assess the extent to which they covered the ranges of endangered tetrapods. We show that in 80% of ecoregions, protected areas offer equal (25%) or worse (55%) protection for species than if their locations were chosen at random.
View Article and Find Full Text PDFChanges in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S).
View Article and Find Full Text PDFDesigning protected area configurations to maximise biodiversity is a critical conservation goal. The configuration of protected areas can significantly impact the richness and identity of the species found there; one large patch supports larger populations but can facilitate competitive exclusion. Conversely, many small habitats spreads risk but may exclude predators that typically require large home ranges.
View Article and Find Full Text PDFMedium and large carnivores coexist with people in urban areas globally, occasionally resulting in negative interactions that prompt questions about how to reduce human-wildlife conflict. Hazing, i.e.
View Article and Find Full Text PDFHuman activities such as the application of agrochemicals may detrimentally disturb natural ecosystems, generating novel selection pressures. Here we examine how pesticides may influence community composition using the aquatic communities within bromeliad phytotelmata, and how adaptive responses to pesticides may influence community-level patterns. We first quantified the composition of macroinvertebrate communities from pesticide-free and pesticide-exposed locations.
View Article and Find Full Text PDFConsensus has emerged in the literature that increased biodiversity enhances the capacity of ecosystems to perform multiple functions. However, most biodiversity/ecosystem function studies focus on a single ecosystem, or on landscapes of homogenous ecosystems. Here, we investigate how increased landscape-level environmental dissimilarity may affect the relationship between different metrics of diversity (α, β, or γ) and ecosystem function.
View Article and Find Full Text PDFIn the United States, the Clean Water Act (CWA) establishes water quality standards important for maintaining healthy freshwater ecosystems. Within the CWA framework, states define their own water quality criteria, leading to a potential fragmentation of standards between states. This fragmentation can influence the management of shared water resources and produce spillover effects of pollutants crossing state lines and other political boundaries.
View Article and Find Full Text PDFFood web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems. In coastal plant communities (kelp, seagrass, mangroves, and salt marsh), several studies have documented the far-reaching effects of changing predator populations. Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide.
View Article and Find Full Text PDFThe composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors.
View Article and Find Full Text PDFSeabird population changes are good indicators of long-term and large-scale change in marine ecosystems, and important because of their many impacts on marine ecosystems. We assessed the population trend of the world's monitored seabirds (1950-2010) by compiling a global database of seabird population size records and applying multivariate autoregressive state-space (MARSS) modeling to estimate the overall population trend of the portion of the population with sufficient data (i.e.
View Article and Find Full Text PDFDispersal decisions underlie the spatial dynamics of metacommunities. Prey individuals may disperse to reduce the risk of either predation or starvation, and both of these risks may depend on conspecific density. Surprisingly, there is little theory examining how dispersal rates should change in response to the combined effects of predation and changes in conspecific density.
View Article and Find Full Text PDFThe strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey.
View Article and Find Full Text PDFGeographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk.
View Article and Find Full Text PDFGlob Chang Biol
November 2014
Concern over accelerating rates of species invasions and losses have initiated investigations into how local and global changes to predator abundance mediate trophic cascades that influence CO2 fluxes of aquatic ecosystems. However, to date, no studies have investigated how species additions or losses at other consumer trophic levels influence the CO2 flux of aquatic ecosystems. In this study, we added a large predatory stonefly, detritivorous stonefly, or grazer tadpole to experimental stream food webs and over a 70-day period quantified their effects on community composition, leaf litter decomposition, chlorophyll-a concentrations, and stream CO2 emissions.
View Article and Find Full Text PDFClimate change and invasive species have the potential to alter species diversity, creating novel species interactions. Interspecific competition and facilitation between predators may either enhance or dampen trophic cascades, ultimately influencing total predator effects on communities and biogeochemical cycling of ecosystems. However, previous studies have only investigated the effects of a single predator species on CO2 flux of aquatic ecosystems.
View Article and Find Full Text PDFEnvironmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes.
View Article and Find Full Text PDFLong-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study.
View Article and Find Full Text PDFFunctional responses play a central role in the nature and stability of predator-prey population dynamics. Here we investigate how induced defenses affect predator functional responses. In experimental communities, prey (Paramecium) expressed two previously undocumented inducible defenses--a speed reduction and a width increase--in response to nonlethal exposure to predatory Stenostomum.
View Article and Find Full Text PDF