Publications by authors named "Edberg N"

Article Synopsis
  • The Comet Interceptor mission aims to explore a long-period comet or an interstellar object entering our Solar System, with a focus on its surface composition, shape, and the composition of its gas and dust.
  • Proposed to the European Space Agency in 2018 and approved in June 2022, it is set to launch in 2029 alongside the Ariel mission, utilizing a low-cost approach that allows it to wait for a suitable target comet.
  • The mission will feature a main probe and two sub-probes (B1 from JAXA and B2), providing simultaneous, detailed 3D information about the comet and its interaction with the solar wind, making it unique compared to previous missions.
View Article and Find Full Text PDF

The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings.

View Article and Find Full Text PDF

Previous modeling studies of Titan's dayside ionosphere predict electron number densities that are roughly a factor of 2 higher than those observed by the RPWS/Langmuir probe. The issue can equivalently be described as the ratio between the calculated electron production rates and the square of the observed electron number densities resulting in roughly a factor of 4 higher effective recombination coefficient than expected from the ion composition and the electron temperature. Here we make an extended reassessment of Titan's dayside ionization balance, focusing on 34 flybys between TA and T120.

View Article and Find Full Text PDF

Effects of solar EUV on positive ions and heavy negative charge carriers (molecular ions, aerosol, and/or dust) in Titan's ionosphere are studied over the course of almost 12 years, including 78 flybys below 1400 km altitude between TA (October 2004) and T120 (June 2016). The Radio and Plasma Wave Science/Langmuir Probe-measured ion charge densities (normalized by the solar zenith angle) show statistically significant variations with respect to the solar EUV flux. Dayside charge densities increase by a factor of ≈2 from solar minimum to maximum, while nightside charge densities are found to anticorrelate with the EUV flux and decrease by a factor of ≈3-4.

View Article and Find Full Text PDF

We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets.

View Article and Find Full Text PDF

The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below ~1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere ( / ≤ 0.

View Article and Find Full Text PDF

We present initial analysis and conclusions from plasma observations made during the reported "Mars plume event" of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator [Sanchez-Lavega et al., Nature, 2015, doi:10.

View Article and Find Full Text PDF

The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels.

View Article and Find Full Text PDF