The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gα and Gα activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2.
View Article and Find Full Text PDFG protein-mediated signaling plays a decisive role in blood pressure regulation and the phenotype of vascular smooth muscle cells (VSMCs); however, the relevance of proteins that restrict G protein activity is not well characterized in this context. Here, we investigated the influence of regulator of G protein signaling 5 (RGS5), an inhibitor of Gα and Gα activity, on blood pressure and the VSMC phenotype during experimental hypertension. In mice, loss of RGS5 did not affect baseline blood pressure, but prevented hypertension-induced structural remodeling.
View Article and Find Full Text PDF