Neurodegenerative diseases (NDDs), which are caused by the degeneration of neurons and their functions, affect a significant part of the world's population. Although gait disorders are one of the critical and common markers to determine the presence of NDDs, diagnosing which NDD the patients have among a group of NDDs using gait data is still a significant challenge to be addressed. In this study, we addressed the multi-class classification of NDDs and aim to diagnose Parkinson's disease (PD), Amyotrophic lateral sclerosis disease (AD), and Huntington's disease (HD) from a group containing NDDs and healthy control subjects.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2020
Background And Objective: Brain-computer interfaces (BCIs) enable people to control an external device by analyzing the brain's neural activity. Functional near-infrared spectroscopy (fNIRS), which is an emerging optical imaging technique, is frequently used in non-invasive BCIs. Determining the subject-specific features is an important concern in enhancing the classification accuracy as well as reducing the complexity of fNIRS based BCI systems.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2018
An asynchronous brain computer interface (A-BCI) determines whether or not a subject is on control state, and produces control commands only in case of subject's being on control state. In this study, we propose a novel P300-based A-BCI algorithm that distinguishes control state and noncontrol state of users. Furthermore, A-BCI algorithm combined with a dynamic stopping function that enables users to select control command independent from a fixed number of intensification sequence.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control.
View Article and Find Full Text PDFBrain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment.
View Article and Find Full Text PDF