Machine learning (ML) methods offer opportunities for gaining insights into the intricate workings of complex biological systems, and their applications are increasingly prominent in the analysis of omics data to facilitate tasks, such as the identification of novel biomarkers and predictive modeling of phenotypes. For scientists and domain experts, leveraging user-friendly ML pipelines can be incredibly valuable, enabling them to run sophisticated, robust, and interpretable models without requiring in-depth expertise in coding or algorithmic optimization. By streamlining the process of model development and training, researchers can devote their time and energies to the critical tasks of biological interpretation and validation, thereby maximizing the scientific impact of ML-driven insights.
View Article and Find Full Text PDFHorizontal gene transfer mediated by conjugation is considered an important evolutionary mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial resistance (AMR) and virulence. The frequency of conjugation-mediated cargo gene exchange has not yet been comprehensively studied within and between bacterial taxa.
View Article and Find Full Text PDFIn response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion.
View Article and Find Full Text PDFIn this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.
View Article and Find Full Text PDFBackground: Widespread bioinformatic resource development generates a constantly evolving and abundant landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic classification of the microorganisms that are present in a given environment. Additional investigation is then required to uncover the functionality of the microbial community, in order to characterize its currently or potentially active biological processes.
View Article and Find Full Text PDFIncreasingly available microbial reference data allow interpreting the composition and function of previously uncharacterized microbial communities in detail, via high-throughput sequencing analysis. However, efficient methods for read classification are required when the best database matches for short sequence reads are often shared among multiple reference sequences. Here, we take advantage of the fact that microbial sequences can be annotated relative to established tree structures, and we develop a highly scalable read classifier, PRROMenade, by enhancing the generalized Burrows-Wheeler transform with a labeling step to directly assign reads to the corresponding lowest taxonomic unit in an annotation tree.
View Article and Find Full Text PDF