In this study, we have evaluated a low field limit drift tube ion mobility device for ion mobility-mass spectrometry (IM-MS) measurements that uses nitrogen as a bath gas with electrospray ionization on a modified Q-TOF instrument. We have determined reduced mobility (K0) and collision cross section (CCS) values for a group of analyte ions that have been characterized previously in other drift tube IM-MS instruments. Our determinations of CCS for this set of ions as well as for standards are in agreement with published values.
View Article and Find Full Text PDFCharacterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here, we present a novel platform for small molecule analyses that addresses these requirements by combining solid-phase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS).
View Article and Find Full Text PDFA commercial liquid chromatography/drift tube ion mobility-mass spectrometer (LC/IM-MS) was evaluated for its utility in global metabolomics analysis. Performance was assessed using 12 targeted metabolite standards where the limit of detection (LOD), linear dynamic range, resolving power, and collision cross section (Ω) are reported for each standard. Data were collected in three different instrument operation modes: flow injection analysis with IM-MS (FIA/IM-MS), LC/MS, and LC/IM-MS.
View Article and Find Full Text PDFA recently developed uniform-field high resolution ion mobility (IM) quadrupole time of flight (Q-TOF) mass spectrometer is used for evaluating the utility of alternate drift gases for complex sample analyses. This study provides collision cross section comparison for 275 total pesticides including structural isomers in nitrogen, helium, carbon dioxide, nitrous oxide and sulfur hexafluoride drift gases. Furthermore, a set of small molecules and Agilent tune mix compounds were used to study the trends in experimentally derived collision cross section values in argon and the alternate drift gases.
View Article and Find Full Text PDFIon mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes.
View Article and Find Full Text PDF