Drug discovery scientists often consider compounds and data in terms of groups, such as chemical series, and relationships, representing similarity or structural transformations, to aid compound optimisation. This is often supported by chemoinformatics algorithms, for example clustering and matched molecular pair analysis. However, chemistry software packages commonly present these data as spreadsheets or form views that make it hard to find relevant patterns or compare related compounds conveniently.
View Article and Find Full Text PDFIn this article we describe a computational method that automatically generates chemically relevant compound ideas from an initial molecule, closely integrated with in silico models, and a probabilistic scoring algorithm to highlight the compound ideas most likely to satisfy a user-defined profile of required properties. The new compound ideas are generated using medicinal chemistry 'transformation rules' taken from examples in the literature. We demonstrate that the set of 206 transformations employed is generally applicable, produces a wide range of new compounds, and is representative of the types of modifications previously made to move from lead-like to drug-like compounds.
View Article and Find Full Text PDF