Introduction: Preeclampsia is a common hypertensive disorder of pregnancy. Several studies have demonstrated that protein aggregates, detected through urine congophilia, is associated with preeclampsia; however, it has yet to be investigated whether urine congophilia remains postpartum in these women. In this study, we aimed to augment prior studies and determine whether urine congophilia is present postpartum.
View Article and Find Full Text PDFCell Stress Chaperones
February 2024
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures.
View Article and Find Full Text PDFThe Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting.
View Article and Find Full Text PDFThe ability of heat shock protein 70 (Hsp70) molecular chaperones to remodel the conformation of their clients is central to their biological function; however, questions remain regarding the precise molecular mechanisms by which Hsp70 machinery interacts with the client and how this contributes toward efficient protein folding. Here, we used total internal reflection fluorescence (TIRF) microscopy and single-molecule fluorescence resonance energy transfer (smFRET) to temporally observe the conformational changes that occur to individual firefly luciferase proteins as they are folded by the bacterial Hsp70 system. We observed multiple cycles of chaperone binding and release to an individual client during refolding and determined that high rates of chaperone cycling improves refolding yield.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2021
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements.
View Article and Find Full Text PDFHeterogeneity of glia in different CNS regions may contribute to the selective vulnerability of neuronal populations in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). Here, we explored regional variations in the expression of heat shock protein 25 in glia under conditions of acute and chronic stress. Hsp27 (Hsp27; murine orthologue: Hsp25) fulfils a number of cytoprotective functions and may therefore be a possible therapeutic target in ALS.
View Article and Find Full Text PDFWe report the first small molecule peptides based on the N-terminal sequence of heat shock protein 27 (Hsp27, gene HSPB1) that demonstrates chaperone-like activity. The peptide, comprising the SWDPF sequence located at Hsp27's amino (N)-terminal domain, directly regulates protein aggregation events, maintaining the disaggregated state of the model protein, citrate synthase. While traditional inhibitors of protein aggregation act via regulation of a protein that facilitates aggregation or disaggregation, our molecules are the first small peptides between 5 and 8 amino acids in length that are based on the N-terminus of Hsp27 and directly control protein aggregation.
View Article and Find Full Text PDFFor fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization.
View Article and Find Full Text PDFDisturbances to protein homeostasis (proteostasis) can lead to protein aggregation and inclusion formation, processes associated with a variety of neurodegenerative disorders. DNAJB proteins are molecular chaperones that have been identified as potent suppressors of disease-related protein aggregation. In this work, a destabilised isoform of firefly luciferase (R188Q/R261Q Fluc; termed FlucDM) was overexpressed in cells to assess the capacity of DNAJBs to inhibit inclusion formation.
View Article and Find Full Text PDFBovine milk α-casein, an intrinsically disordered protein, readily forms amyloid fibrils in vitro and is implicated in the formation of amyloid fibril deposits in mammary tissue. Its two cysteine residues participate in the formation of either intra- or intermolecular disulphide bonds, generating monomer and dimer species. X-ray solution scattering measurements indicated that both forms of the protein adopt large, spherical oligomers at 20 °C.
View Article and Find Full Text PDFSmall heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches.
View Article and Find Full Text PDFThe aggregation of proteins into amyloid fibrils has been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Benzothiazole dyes such as Thioflavin T (ThT) are well-characterized and widely used fluorescent probes for monitoring amyloid fibril formation. However, existing dyes lack sensitivity and specificity to oligomeric intermediates formed during fibril formation.
View Article and Find Full Text PDFProtein aggregates that result in inclusion formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II.
View Article and Find Full Text PDFNeurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases.
View Article and Find Full Text PDFSmall Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production.
View Article and Find Full Text PDFFuture increases in the intensity of heat waves (high heat and low water availability) are predicted to be one of the most significant impacts on organisms. Using six native grasses from Eastern Australia, we assessed their capacity to tolerate heat waves with low water availability. We were interested in understanding differential response between native grasses of differing photosynthetic pathways in terms of physiological and some molecular parameters to ecologically relevant summer heat waves that are associated with low rainfall.
View Article and Find Full Text PDFThe aberrant aggregation of α-synuclein is associated with several human diseases, collectively termed the α-synucleinopathies, which includes Parkinson's disease. The progression of these diseases is, in part, mediated by extracellular α-synuclein oligomers that may exert effects through several mechanisms, including prion-like transfer, direct cytotoxicity, and pro-inflammatory actions. In this study, we show that two abundant extracellular chaperones, clusterin and α-macroglobulin, directly bind to exposed hydrophobic regions on the surface of α-synuclein oligomers.
View Article and Find Full Text PDFThe heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements.
View Article and Find Full Text PDFBackground: Amyotrophic lateral sclerosis (ALS) is among the most common of the motor neuron diseases, and arguably the most devastating. During the course of this fatal neurodegenerative disorder, motor neurons undergo progressive degeneration. The currently best-understood animal models of ALS are based on the over-expression of mutant isoforms of Cu/Zn superoxide dismutase 1 (SOD1); these indicate that there is a perturbation in metal homeostasis with disease progression.
View Article and Find Full Text PDFαB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54-60 form contacts that stabilise the assembly.
View Article and Find Full Text PDFMolecular chaperone proteins perform a diversity of roles inside and outside the cell. One of the most important is the stabilization of misfolding proteins to prevent their aggregation, a process that is potentially detrimental to cell viability. Diseases such as Alzheimer's, Parkinson's, and cataract are characterized by the accumulation of protein aggregates.
View Article and Find Full Text PDFProteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits.
View Article and Find Full Text PDF