Publications by authors named "Eckhard Nordhoff"

Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons.

View Article and Find Full Text PDF

Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinson's disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation.

View Article and Find Full Text PDF

Centrosome morphology and number are frequently deregulated in cancer cells. Here, to identify factors that are functionally relevant for centrosome abnormalities in cancer cells, we established a protein-interaction network around 23 centrosomal and cell-cycle regulatory proteins, selecting the interacting proteins that are deregulated in cancer for further studies. One of these components, LGALS3BP, is a centriole- and basal body-associated protein with a dual role, triggering centrosome hypertrophy when overexpressed and causing accumulation of centriolar substructures when downregulated.

View Article and Find Full Text PDF

Background: Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS). Standard methods for precursor ion selection, commonly based on data dependent acquisition, select highly abundant peptide signals in each spectrum. However, these approaches produce redundant information and are biased towards high-abundance proteins.

View Article and Find Full Text PDF

Understanding the interplay of different cellular proteins and their substrates is of major interest in the postgenomic era. For this purpose, selective isolation and identification of proteins from complex biological samples is necessary and targeted isolation of enzyme families is a challenging task. Over the last years, methods like activity-based protein profiling (ABPP) and capture compound mass spectrometry (CCMS) have been developed to reduce the complexity of the proteome by means of protein function in contrast to standard approaches, which utilize differences in physical properties for protein separation.

View Article and Find Full Text PDF

Currently, the precursor ion selection strategies in LC-MS mainly choose the most prominent peptide signals for MS/MS analysis. Consequently, high-abundance proteins are identified by MS/MS of many peptides, whereas proteins of lower abundance might elude identification. We present a novel, iterative and result-driven approach for precursor ion selection that significantly increases the efficiency of an MS/MS analysis by decreasing data redundancy and analysis time.

View Article and Find Full Text PDF

The neurodegenerative disorder Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The presence of neurofibrillary tangles, consisting of hyperphosphorylated tau protein, is one of the major neuropathologic characteristics of the disease, making this protein an attractive biomarker for AD and a possible target for therapy. Here, we describe an optimized immunoprecipitation mass spectrometry method that enables, for the first time, detailed characterization of tau in human cerebrospinal fluid.

View Article and Find Full Text PDF

Mass spectrometry is the most sensitive and specific analytical technique available for protein identification and quantification. Over the past 10 years, by the use of mass spectrometric techniques hundreds of previously unknown proteins have been identified as DNA-binding proteins that are involved in the regulation of gene expression, replication, or DNA repair. Beyond this task, the applications of mass spectrometry cover all aspects from sequence and modification analysis to protein structure, dynamics, and interactions.

View Article and Find Full Text PDF

It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics.

View Article and Find Full Text PDF

In the present study we show results of a large-scale proteome analysis of the recently sequenced plant Arabidopsis thaliana. On the basis of a previously published sequential protein extraction protocol, we prepared protein extracts from eight different A. thaliana tissues (primary leaf, leaf, stem, silique, seedling, seed, root, and inflorescence) and analysed these by two-dimensional gel electrophoresis.

View Article and Find Full Text PDF

Arraying technologies have shown the way to smaller sample volumes, more efficient analyses and higher throughput. Proteomics is a field, which has grown in significance in the last five years. This review outlines recent developments in protein arrays and their applications in proteomics, and discusses the requirements, current limitations and the potential and future perspectives of the technology.

View Article and Find Full Text PDF

To increase the number of proteins detectable by two-dimensional electrophoresis (2-DE) in plants, we present a new procedure for extracting total proteins from plant tissue. This method avoids any loss of proteins in the course of sample preparation and results in two different fractions, one comprising mainly the cytoplasmatic proteins, the other one containing predominantly structure bond proteins. 2-DE patterns obtained from these two fractions show that the total number of different protein spots detected exceeds the degree of resolution commonly reported for plant proteins threefold.

View Article and Find Full Text PDF

The generation of protein chips requires much more efforts than DNA microchips. While DNA is DNA and a variety of different DNA molecules behave stable in a hybridisation experiment, proteins are much more difficult to produce and to handle. Outside of a narrow range of environmental conditions, proteins will denature, lose their three-dimensional structure and a lot of their specificity and activity.

View Article and Find Full Text PDF

The use of delayed ion extraction in MALDI time-of-flight mass spectrometry distorts the linear relationship between m/z and the square of the ion flight time (t2) with the consequence that, if a mass accuracy of 10 ppm or better is to be obtained, the calibrant signals have to fall close to the analyte signals. If this is not possible, systematic errors arise. To eliminate these, a higher-order calibration function and thus several calibrant signals are required.

View Article and Find Full Text PDF

A new strategy for identifying proteins by MALDI-TOF-MS peptide mapping is reported. In contrast to current approaches, the strategy does not rely on a good relative or absolute mass accuracy as the criterion that discriminates false positive results. The protein sequence database is first searched for all proteins that match a minimum five of the submitted masses within the maximum expected relative errors when the default or externally determined calibration constants are used, for instance, +/-500 ppm.

View Article and Find Full Text PDF

We describe the technical feasibility and methodology to characterize a protein by a minimal set of structural information generated by matrix assisted laser desorption/ionization (MALDI)-mass spectrometry, termed a "minimal protein Identifier" (MPI). MPIs can be determined for proteins from two-dimensional gels and recombinant proteins and can be used to compare and identify proteins from these sources.

View Article and Find Full Text PDF