Publications by authors named "Eckart Stolle"

Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity.

View Article and Find Full Text PDF

Metazoa-level universal single-copy orthologs (mzl-USCOs) are universally applicable markers for DNA taxonomy in animals that can replace or supplement single-gene barcodes. Previously, mzl-USCOs from target enrichment data were shown to reliably distinguish species. Here, we tested whether USCOs are an evenly distributed, representative sample of a given metazoan genome and therefore able to cope with past hybridization events and incomplete lineage sorting.

View Article and Find Full Text PDF
Article Synopsis
  • Venoms are a great example of how similar traits can evolve independently in different animal groups, but there's limited research on toxin genes in most species, especially in hymenopteran insects like bees.
  • A study examined the origins of 11 toxin genes across 32 hymenopteran genomes, finding that most venom genes developed from single gene co-option and further diversified through gene duplication.
  • The research revealed that most venom genes are common to all hymenopterans, with only a few like melittin and anthophilin1 being exclusive to bees, suggesting these venom proteins existed before the significant diversification of this insect group.
View Article and Find Full Text PDF

Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Introgression serves as a key source of adaptive genetic variation, but recombination often disrupts beneficial allele combinations.
  • Researchers studied a large supergene region in Solenopsis fire ants that influences whether colonies have one or multiple queens.
  • They found that the supergene variant for multiple-queen colonies originated in one species and then spread to others through hybridization, showing how supergene structures help complex traits cross species boundaries.
View Article and Find Full Text PDF

The origin of the western honey bee has been intensely debated. Addressing this knowledge gap is essential for understanding the evolution and genetics of one of the world’s most important pollinators. By analyzing 251 genomes from 18 native subspecies, we found support for an Asian origin of honey bees with at least three expansions leading to African and European lineages.

View Article and Find Full Text PDF

Eusocial insect queens are remarkable in their ability to maximize both fecundity and longevity, thus escaping the typical trade-off between these two traits. Several mechanisms have been proposed to underlie the remolding of the trade-off, such as reshaping of the juvenile hormone (JH) pathway, or caste-specific susceptibility to oxidative stress. However, it remains a challenge to disentangle the molecular mechanisms underlying the remolding of the trade-off in eusocial insects from caste-specific physiological attributes that have subsequently arisen.

View Article and Find Full Text PDF

Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality.

View Article and Find Full Text PDF

Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young 'social' supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination.

View Article and Find Full Text PDF

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species () that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality.

View Article and Find Full Text PDF

Social bees are important insect pollinators of wildflowers and agricultural crops, making their reported declines a global concern. A major factor implicated in these declines is the widespread use of neonicotinoid pesticides. Indeed, recent research has demonstrated that exposure to low doses of these neurotoxic pesticides impairs bee behaviours important for colony function and survival.

View Article and Find Full Text PDF

Alkali bees () are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States.

View Article and Find Full Text PDF

The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype.

View Article and Find Full Text PDF

Long-term suppression of recombination ultimately leads to gene loss, as demonstrated by the depauperate Y and W chromosomes of long-established pairs of XY and ZW chromosomes. The young social supergene of the Solenopsis invicta red fire ant provides a powerful system to examine the effects of suppressed recombination over a shorter timescale. The two variants of this supergene are carried by a pair of heteromorphic chromosomes, referred to as the social B and social b (SB and Sb) chromosomes.

View Article and Find Full Text PDF

Variation in social behavior is common yet our knowledge of the mechanisms underpinning its evolution is limited. The fire ant provides a textbook example of a Mendelian element controlling social organization: alternate alleles of a genetic element first identified as encoding an odorant binding protein (OBP) named determine whether a colony accepts one or multiple queens. The potential roles of such a protein in perceiving olfactory cues and evidence of positive selection on its amino acid sequence made it an appealing candidate gene.

View Article and Find Full Text PDF

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity.

View Article and Find Full Text PDF

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species.

View Article and Find Full Text PDF

Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.

View Article and Find Full Text PDF

We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population genomics and population genetics also in non-model organisms. We demonstrate the validity of our approach by comparing two honeybee and several stingless bee samples.

View Article and Find Full Text PDF

Microsatellites, or simple sequence repeats (SSRs), are common and widespread DNA elements in genomes of many organisms. However, their dynamics in genome evolution is unclear, whereby they are thought to evolve neutrally. More available genome sequences along with dated phylogenies allowed for studying the evolution of these repetitive DNA elements along evolutionary time scales.

View Article and Find Full Text PDF

In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1-52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing.

View Article and Find Full Text PDF

Background: The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers.

View Article and Find Full Text PDF