Publications by authors named "Eck H"

We genotyped a population of 618 diploid potato clones derived from six independent potato-breeding programmes from NW-Europe. The diploids were phenotyped for 23 traits, using standardized protocols and common check varieties, enabling us to derive whole population estimators for most traits. We subsequently performed a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) for all traits with SNPs and short-read haplotypes derived from read-backed phasing.

View Article and Find Full Text PDF

Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported.

View Article and Find Full Text PDF

The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes.

View Article and Find Full Text PDF

Unlabelled: Genome-wide association studies (GWAS) are a useful tool to unravel the genetic architecture of complex traits, but the results can be difficult to interpret. Population structure, genetic heterogeneity, and rare alleles easily result in false positive or false negative associations. This paper describes the analysis of a GWAS panel combined with three bi-parental mapping populations to validate GWAS results, using phenotypic data for steroidal glycoalkaloid (SGA) accumulation and the ratio (SGR) between the two major glycoalkaloids α-solanine and α-chaconine in potato tubers.

View Article and Find Full Text PDF

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts.

View Article and Find Full Text PDF

Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes.

View Article and Find Full Text PDF

Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened.

View Article and Find Full Text PDF

Self-compatible (SC) diploid potatoes allow innovative potato breeding. Therefore, the Sli gene, originally described in S. chacoense, has received much attention.

View Article and Find Full Text PDF

A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNP markers associated with pathotype 1(D1) wart disease resistance. Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease.

View Article and Find Full Text PDF

Background: Standard strategies to identify genomic regions involved in a specific trait variation are often limited by time and resource consuming genotyping methods. Other limiting pre-requisites are the phenotyping of large segregating populations or of diversity panels and the availability and quality of a closely related reference genome. To overcome these limitations, we designed efficient Comparative Subsequence Sets Analysis (CoSSA) workflows to identify haplotype specific SNPs linked to a trait of interest from Whole Genome Sequencing data.

View Article and Find Full Text PDF

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape.

View Article and Find Full Text PDF

Usually, mapping studies in potato are performed with segregating populations from crosses between highly heterozygous diploid or tetraploid parents. These studies are hampered by a high level of genetic background noise due to the numerous segregating alleles, with a maximum of eight per locus. In the present study, we aimed to increase the mapping efficiency by using progenies from diploid inbred populations in which at most two alleles segregate.

View Article and Find Full Text PDF

The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable.

View Article and Find Full Text PDF

The number of SNPs required for QTL discovery is justified by the distance at which linkage disequilibrium has decayed. Simulations and real potato SNP data showed how to estimate and interpret LD decay. The magnitude of linkage disequilibrium (LD) and its decay with genetic distance determine the resolution of association mapping, and are useful for assessing the desired numbers of SNPs on arrays.

View Article and Find Full Text PDF

A 20K SNP array was developed and a comprehensive set of tetraploid cultivar was genotyped. This allowed us to identify footprints of the breeding history in contemporary breeding material such as identification of introgression segments, selection and founder signatures. A non-redundant subset of 15,138 previously identified SNPs and 4454 SNPs originating from the SolCAP project were combined into a 20k Infinium SNP array for genotyping a total of 569 potato genotypes.

View Article and Find Full Text PDF

Background: In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned.

View Article and Find Full Text PDF

One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes.

View Article and Find Full Text PDF

Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits. Two association mapping panels were analysed for marker-trait associations to identify quantitative trait loci (QTL).

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on assessing genomic DNA variations and calling genotypes in autotetraploid potato cultivars using a method called genotyping-by-sequencing (GBS), which was enhanced through in-solution hybridisation for more effective analysis of specific genes.
  • - A total of 12.4 Gigabases of high-quality sequence data were generated from 83 potato cultivars, leading to the identification of 129,156 sequence variants with significant nucleotide diversity, and a considerable portion of these variants were rare.
  • - The findings included confirmation of the results through KASP genotyping assays, indicating that read depths of around 60-80× are adequate for accurately estimating allele copy numbers in autotetraploids. *
View Article and Find Full Text PDF

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development.

View Article and Find Full Text PDF

An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T(e)) profiles close to the output of the plasma source and, at a distance of 1.

View Article and Find Full Text PDF

Background: Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH).

View Article and Find Full Text PDF

Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression.

View Article and Find Full Text PDF