InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.
View Article and Find Full Text PDFEnteral Nutrition (EN) is used for the dietary management of patients requiring tube feed and who are at risk of disease related malnutrition. Previously, EN with a dairy-dominant p4 protein blend (DD-P4: 20% soy, 20% pea, 25% casein and 35% whey) was shown to not coagulate in the stomach, increase gastric emptying rate and reduce gastric residual volume compared to EN with casein-dominant protein blends (CD; 80% casein and 20% whey), which is relevant for upper gastrointestinal tolerance. In line with the EAT-Lancet report, a new plant-dominant protein blend (PD-P4: 46% soy, 32% pea, 16% casein and 6% whey) was developed.
View Article and Find Full Text PDFBoosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO/CH selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N and CO gas adsorption.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
July 2024
Nanocomposites of complex metal hydrides and oxides are promising solid state electrolytes. The interaction of the metal hydride with the oxide results in a highly conducting interface layer. Up until now it has been assumed that the interface chemistry is independent of the nanoconfinement method.
View Article and Find Full Text PDFPolymer-in-ceramic composite solid electrolytes (PIC-CSEs) provide important advantages over individual organic or inorganic solid electrolytes. In conventional PIC-CSEs, the ion conduction pathway is primarily confined to the ceramics, while the faster routes associated with the ceramic-polymer interface remain blocked. This challenge is associated with two key factors: (i) the difficulty in establishing extensive and uninterrupted ceramic-polymer interfaces due to ceramic aggregation; (ii) the ceramic-polymer interfaces are unresponsive to conducting ions because of their inherent incompatibility.
View Article and Find Full Text PDFThe ability to quantify transcriptional dynamics in individual cells via live imaging has revolutionized our understanding of gene regulation. However, such measurements are lacking in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA labeling to the quantification of transcription in zebrafish, a model vertebrate.
View Article and Find Full Text PDFChloride-based solid electrolytes are considered interesting candidates for catholytes in all-solid-state batteries due to their high electrochemical stability, which allows the use of high-voltage cathodes without protective coatings. Aliovalent Zr(iv) substitution is a widely applicable strategy to increase the ionic conductivity of LiM(iii)Cl solid electrolytes. In this study, we investigate how Zr(iv) substitution affects the structure and ion conduction in Li In Zr Cl (0 ≤ ≤ 0.
View Article and Find Full Text PDFEasy-to-manufacture LiS-PS glass ceramics are the key to large-scale all-solid-state lithium batteries from an industrial point of view, while their commercialization is greatly hampered by the low room temperature Li conductivity, especially due to the lack of solutions. Herein, we propose a nanocrystallization strategy to fabricate super Li-conductive glass ceramics. Through regulating the nucleation energy, the crystallites within glass ceramics can self-organize into hetero-nanodomains during the solid-state reaction.
View Article and Find Full Text PDFWe investigate the impact of Al incorporation on the structure and dynamics of Al-doped lithium thiophosphates (LiAlPS) based on β-LiPS. Al and Li magic-angle spinning NMR spectra confirm that Al ions occupy octahedral sites in the structure. Quantitative analyses of Al NMR spectra show that the maximum Al incorporation is = 0.
View Article and Find Full Text PDFIndium phosphide quantum dots are the main alternative for toxic and restricted Cd-based quantum dots for lighting and display applications, but in the absence of protecting ZnSe and/or ZnS shells, InP quantum dots suffer from low photoluminescence quantum yields. Traditionally, HF treatments have been used to improve the quantum yield of InP to ∼50%, but these treatments are dangerous and not well understood. Here, we develop a postsynthetic treatment that forms HF in situ from benzoyl fluoride, which can be used to strongly increase the quantum yield of InP core-only quantum dots.
View Article and Find Full Text PDFThe eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study.
View Article and Find Full Text PDFBackground: Reverse shoulder arthroplasty (RSA) is a common treatment of a variety of disabling shoulder conditions. The purpose of this study was to determine revision-free survivorship after RSA using a medialized glenoid and lateralized onlay-type humerus implant and to identify etiologies of revision.
Methods: All RSAs performed using the Comprehensive Reverse Shoulder System (Zimmer Biomet, Inc.
Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of by the activator Bicoid and the pioneer-like transcription factor Zelda in living embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate transcription.
View Article and Find Full Text PDFTijdschr Econ Soc Geogr
July 2020
Marketplaces are regarded as quintessential public spaces, providing not only access to fresh produce but also functioning as important social infrastructures. However, many marketplaces closed down or changed fundamentally in response to the COVID-19 coronavirus outbreak. In this paper, we reflect on the effects of the crisis on Dutch marketplaces from two interdependent analytical levels.
View Article and Find Full Text PDFUltrasound is the most commonly used clinical imaging modality. However, in applications requiring cell-labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described.
View Article and Find Full Text PDFAs a new class of sustainable carbon material, "carbon dots" is an umbrella term covering many types of materials. Herein, a broad range of techniques was used to develop the understanding of hydrothermally synthesized carbon dots, and it is shown how fine-tuning the structural features by simple reduction/oxidation reactions can drastically affect their excited-state properties. Structural and spectroscopic studies found that photoluminescence originates from direct excitation of localized fluorophores involving oxygen functional groups, whereas excitation at graphene-like features leads to ultrafast phonon-assisted relaxation and largely quenches the fluorescent quantum yields.
View Article and Find Full Text PDFConnecting the developmental patterning of tissues to the mechanistic control of RNA polymerase II remains a long-term goal of developmental biology. Many key elements have been identified in the establishment of spatial-temporal control of transcription in the early Drosophila embryo, a model system for transcriptional regulation. The dorsal-ventral axis of the Drosophila embryo is determined by the graded distribution of Dorsal (Dl), a homolog of the nuclear factor κB (NF-κB) family of transcriptional activators found in humans [1, 2].
View Article and Find Full Text PDFAfter years of controversy over the solid state structure of the essential amino acid l-phenylalanine, four different polymorphic forms were published recently. The common form I has symmetry 2 with four molecules in the asymmetric unit (' = 4), similar to form III, but with a different arrangement of molecular bilayers. Form II, obtained from the hydrate at very low humidity, is unrelated to forms I and III, as is the high-density form IV.
View Article and Find Full Text PDFThe rich landscape of enantiotropically related polymorphic forms and their solid-state phase transitions of dl-2-aminoheptanoic acid (dl-AHE) has been explored using a range of complementary characterization techniques, and is largely exemplary of the polymorphic behavior of linear aliphatic amino acids. As many as five new polymorphic forms were found, connected by four fully reversible solid-state phase transitions. Two low temperature forms were refined in a high ' crystal structure, which is a new phenomenon for linear aliphatic amino acids.
View Article and Find Full Text PDFThe high Li-ion conductivity of the argyrodite LiPSCl makes it a promising solid electrolyte candidate for all-solid-state Li-ion batteries. For future application, it is essential to identify facile synthesis procedures and to relate the synthesis conditions to the solid electrolyte material performance. Here, a simple optimized synthesis route is investigated that avoids intensive ball milling by direct annealing of the mixed precursors at 550 °C for 10 h, resulting in argyrodite LiPSCl with a high Li-ion conductivity of up to 4.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2018
Olefin polymerization using Ziegler-Natta catalysts (ZNCs) is an important industrial process. Despite this, fundamental insight into the inner working mechanisms of these catalysts remains scarce. Here, we focus on the low-γ nuclei Mg and Cl for an in-depth solid-state NMR and density functional theory (DFT) study of the catalyst's MgCl support in binary adducts prepared by ball-milling.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2018
Ziegler-Natta catalysis is a very important industrial process for the production of polyolefins. However, the catalysts are not well-understood at the molecular level. Yet, atomic-scale structural information is of pivotal importance for rational catalyst development.
View Article and Find Full Text PDF