Protein cages are promising tools for the controlled delivery of therapeutics and imaging agents when endowed with programmable disassembly strategies. Here, we produced hybrid nanocomposites made of tobacco mosaic virus (TMV) and magnetic iron oxide nanoparticles (IONPs), designed to disrupt the viral protein cages using magnetically induced release of heat. We studied the effects of this magnetic hyperthermia on the programmable viral protein capsid disassembly using (1) elongated nanocomposites of TMV coated heterogeneously with magnetic iron oxide nanoparticles (TMV@IONPs) and (2) spherical nanocomposites of polystyrene (PS) on which we deposited presynthesized IONPs and TMV via layer-by-layer self-assembly (PS@IONPs/TMV).
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy, a highly sensitive technique for detecting trace-level analytes, relies on plasmonic substrates. The choice of substrate, its morphology, and the excitation wavelength are crucial in SERS applications. To address advanced SERS requirements, the design and use of efficient nanocomposite substrates have become increasingly important.
View Article and Find Full Text PDFThe field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals.
View Article and Find Full Text PDFPhotocatalysis reactions are of great interest as an effective tool against the profusely increasing population of antibiotic-resistant bacteria species. In particular, the promising evidence on plasmon-sensitized titanium dioxide (TiO) photocatalysis inspired us to investigate their antibacterial activity stemming from the photogenerated reactive oxygen species (ROS). Herein, TiO nanostructures were grown within a silica (SiO) aerogel matrix with high surface area and porosity, and their ROS-related phototoxic effects against bacteria were investigated under solar- and visible-light irradiations.
View Article and Find Full Text PDFThis study compares two kinds of magnetic microbeads with different surface features and cell entry pathways, aiming to provide insights into how to program their cell uptake and intracellular fate. It is found that a rougher surface enhances the cell uptake of the microbeads, regardless of whether they are pulled by a magnetic field gradient or adsorbed by the cell membrane. However, the entry route affects the intracellular localization of the microbeads: The magnetically dragged microbeads reach the cytoplasm, while the adsorbed microbeads stay in the late endosomes and lysosomes.
View Article and Find Full Text PDFSelf-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels.
View Article and Find Full Text PDFNanostructures with concave shapes made from continuous segments of plasmonic metals are known to dramatically enhance Raman scattering. Their synthesis in solutions is hindered, however, by their thermodynamic instability due to large surface area and high curvature of refracted geometries with nanoscale dimensions. Herein, we show that nanostructures with concave geometries can spontaneously form via self-organization of gold nanoparticles (NPs) at the air-water interface.
View Article and Find Full Text PDF