Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.
View Article and Find Full Text PDFReliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients.
View Article and Find Full Text PDFUnlabelled: Three-dimensional (3D) spheroid cell cultures are excellent models used in cancer biology research and drug screening. The objective of this study was to develop a lung carcinoma spheroid based microfluidic platform with perfusion function to mimic lung cancer pathology and investigate the effect of a potential drug molecule, panaxatriol. Spheroids were successfully formed on agar microtissue molds at the end of 10 days, reaching an average diameter of about 317.
View Article and Find Full Text PDFRespiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease.
View Article and Find Full Text PDFIn bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow.
View Article and Find Full Text PDFThe aim of this study was to formulate silica and alginate hydrogels for immobilization of β-glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate-polyethylene oxide matrix where the relative activity in alginate beads was 87%.
View Article and Find Full Text PDFTwo dimensional (2D) cell culture systems lack the ability to mimic in vivo conditions resulting in limitations for preclinical cell-based drug and toxicity screening assays and modelling tumor biology. Alternatively, 3D cell culture systems mimic the specificity of native tissue with better physiological integrity. In this regard, microfluidic chips have gained wide applicability for in vitro 3D cancer cell studies.
View Article and Find Full Text PDFIn this study, the objective was to separate exopolysaccharides (EPSs) released in the broth subsequent to outdoor cultivation of Botryococcus braunii. For this, poly(2-hydroxyethyl methacrylate) (PHEMA) cryogels were synthesized. After that, the surface was modified by coupling Concanavalin A.
View Article and Find Full Text PDFBiomicrofluidics
September 2015
Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges.
View Article and Find Full Text PDF