3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering.
View Article and Find Full Text PDFCurrent approaches to develop bone tissue engineering scaffolds have some limitations and shortcomings. They mainly suffer from combining mechanical stability and bioactivity on the same platform. Synthetic polymers are able to produce mechanically stable sturctures with fibrous morphology when they are electrospun, however, they cannot exhibit bioactivity, which is crucial for tissue engineering and regenerative medicine.
View Article and Find Full Text PDFRecent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional low-throughput screening techniques remains a critical challenge in the field. In contrast, the use of increasingly sophisticated omics technologies to facilitate high-throughput screening of unbiased global understanding of cell-biomaterial interactions at gene, epigenetic, mRNA, protein, metabolite, and lipid levels holds great potential to predict the therapeutic outcome of biomaterials with specific properties.
View Article and Find Full Text PDF