Publications by authors named "Ecaterina Stela Dragan"

Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.

View Article and Find Full Text PDF

The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification.

View Article and Find Full Text PDF

It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of CrO and HPO oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels.

View Article and Find Full Text PDF

Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations.

View Article and Find Full Text PDF

The paper reports on the performances of cross-linked amidoxime hosted into mesoporous silica (AMOX) in the removal of As(III) and As(V). The optimum pH for sorption of As(III) and As(V) was pH 8 and pH 5, respectively. The PFO kinetic model and the Sips isotherm fitted the best the experimental data.

View Article and Find Full Text PDF

In this paper, we present the synthesis of new polymeric adsorbents derived from macroporous chloromethylated styrene-divinylbenzene (DVB) copolymers with different cross-linking degrees functionalized with the following aminobenzoic groups: styrene-6.7% DVB (PAB1), styrene-10% DVB (PAB2), and styrene-15% DVB (PAB3). The new polymeric products, PAB1, PAB2, and PAB3, were characterized by FTIR spectroscopy, thermogravimetric analysis, and EDX, SEM, and BET analysis, respectively.

View Article and Find Full Text PDF

Chitosan (CS)-based drug delivery systems (DDSs) are often stabilized by chemical cross-linking. A much more friendly approach to deliver drugs in a controlled manner is represented by polyelectrolyte complexes (PECs) physically stabilized by spontaneous interactions between CS and natural or synthetic biocompatible polyanions. PECs with tunable structures, morphologies, and mechanical properties were fabricated in this paper by an innovative and sustainable strategy.

View Article and Find Full Text PDF

Curcumin (CCM) is a natural hydrophobic polyphenol known for its numerous applications in the food industry as a colorant or jelly stabilizer, and in the pharmaceutical industry due to its anti-inflammatory, antibacterial, antioxidant, anti-cancer, and anti-Alzheimer properties. However, the large application of CCM is limited by its poor solubility in water and low stability. To enhance the bioavailability of CCM, and to protect it against the external degradation agents, a novel strategy, which consists in the preparation of semi-interpenetrating polymer networks, (s-IPNs) based on poly(,-dimethylaminoethyl methacrylate) entrapped in poly(acrylamide) networks, by a cryogelation technique, was developed in this work.

View Article and Find Full Text PDF

Phosphate anions are recognized as the main responsible for the eutrophication of surface waters. In this work, two strong base anion exchangers having either N,N-dimethyl 2-hydroxyethylammonium (SBAEx.2M) or N,N-diethyl 2-hydroxyethylammonium (SBAEx.

View Article and Find Full Text PDF

In light of the fact that two with good compatibility are better than one, the homo-interpenetrating polymer network (IPN) strategy was used in this work to design novel amidoxime (AOX)-interpenetrating networks into porous silica (PSi) with the final aim to enhance the sorption performances of composite sorbents toward Cs and Sr. To achieve this goal, first, a homo-IPN of poly(acrylonitrile) (PAN) was constructed inside the channels of two kinds of porous silica, one mesoporous (PSi1) and one macroporous (PSi2), the textural properties of silica being exploited in controlling the sorption performances of the composites. The novel composites were fully characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and the nitrogen sorption/desorption isotherms (Brunauer-Emmett-Teller (BET) analysis).

View Article and Find Full Text PDF

Removal of Cr(VI) from the environment represents a stringent issue because of its tremendous effects on living organisms. In this context, design of sorbents with high sorption capacity for Cr(VI) is getting a strong need. For this purpose, poly(vinylbenzyl chloride), impregnated into porous silica (PSi), was cross-linked with either ,,','-tetramethyl-1,2-ethylenediamine (TEMED) or ,,','-tetramethyl-1,3-propanediamine, followed by the reaction of the free -CHCl groups with ,-diethyl-2-hydroxyethylamine to generate strong base anion exchangers (ANEX) inside the pores.

View Article and Find Full Text PDF

Design of polymeric matrices for loading/release purposes is of great interest in various applications, such as drug delivery systems, antimicrobial surfaces, biosensors, water purification. Compared with other strategies to fabricate materials for such applications, the Layer-by-Layer (LbL) assembly remarked itself by the countless possibilities to tailor the organic architectures at nanoscale owing to the structural diversity of "nano-bricks" suitable for assembly and easiness to control the deposition features. LbL assembled systems have been extensively used as matrices to load/release low molecular compounds such as drugs and dyes, proteins and enzymes, or DNA (RNA).

View Article and Find Full Text PDF

Macromolecular drugs, such as proteins and peptides, are lately readily available and used in the treatment of diseases including diabetes and cancer, as well as in therapies such as gene therapy, wound dressing, and tissue engineering. However, the bioavailability, the extent and the rate at which these drugs reach the target tissue are highly dependent on the carrier and on the route of administration. Among the multitude of biocompatible polymers used to design vehicles for macromolecular drugs, polysaccharides are preferred due to their mucoadhesive, antimicrobial, and anti-inflammatory properties.

View Article and Find Full Text PDF

Copper, nickel, zinc, chromium, and iron ions are the prevailing contaminants in the aqueous effluents resulting from the photo-etching industry. In this context, we investigate here the metal ion sorption performance of an ion-imprinted cryogel (IIC), consisting of low-cost materials coming from renewable resources, towards multi-component metal ion solutions. The IIC sorbent, which is based on a chitosan matrix embedding a natural zeolite, was synthesized using a straightforward strategy by coupling copper-imprinting and unidirectional ice-templating methods.

View Article and Find Full Text PDF

Currently, biosorption is considered a leading-edge environmentally-friendly method for the low-cost remediation of wastewaters contaminated with metal ions. However, the safe disposal of metal-loaded biosorbents is still a challenging issue. In this context, our major objective was to explore the possibility of "waste minimization" by reusing the metal-loaded biosorbents in further environmental applications, particularly into the oxidative catalysis of dyes.

View Article and Find Full Text PDF

The fabrication of novel chemically cross-linked double network cryogels (DNC), with an abundant number of amine groups, based on chitosan (CS) cross-linked with glutaraldehyde (GA), as the first network, and poly(ethyleneimine) (PEI), with a concentration up to 15% cross-linked with ethyleneglycol diglycidyl ether (EGDGE), as the second network, and their enhanced sorption capacity for phosphate ions are presented here. The phosphate sorption was fast (equilibrium in three hours) and well modeled by the pseudo-second-order kinetic model. The experimental sorption isotherms were fitted with Langmuir, Freundlich, Sips and Dubinin-Radushkevich isotherm models.

View Article and Find Full Text PDF

Novel composite biosorbents were developed in this work as cryobeads by dual cross-linking of a mixture of chitosan (CS) and starch coming from different botanical sources, such as potato, wheat, and rice, grafted with poly(acrylonitrile) (PAN). Glutaraldehyde and poly(ethylene glycol diglycidyl ether) were used as cross-linkers. Composite cryobeads were characterized by FTIR, SEM-EDX, and swelling kinetics.

View Article and Find Full Text PDF

There is a paramount need in finding sorbents endowed with selectivity in sorption of certain dyes from their mixture with other dyes from the same family. In this context, novel composite anion exchangers (CANEXs) were fabricated here by an innovative approach using silica DAISOGEL as the host for an anion exchanger (ANEX) bearing vinylbenzyl N, N-diethyl 2-hydroxyethyl ammonium moieties. Information about the outer surface versus in-pore generation of ANEX as a function of silica morphology was acquired by scanning electron microscopy.

View Article and Find Full Text PDF

An original strategy is proposed here to design chitosan-based ion-imprinted cryo-composites (II-CCs) with pre-organized recognition sites and tailored porous structure by combining ion-imprinting and ice-templating techniques. The cryo-composites showed a tube-like porous morphology with interconnected parallel micro-channels, the distance between the channel walls being around 15 μm. Both the entrapment of a natural zeolite and the presence of carboxylate groups, generated by partial hydrolysis of amide moieties, led to II-CCs with controlled swelling ratios (25-40 g/g, depending on pH) and enhanced overall chelating efficiency (260 mg Cu/g composite).

View Article and Find Full Text PDF

The aim of the present work is to construct and investigate the properties of novel polyelectrolyte multilayers consisting of poly(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) and sodium alginate (SA). The influence of PDMAEMA's pH dependent ionization degree on the charge balance, thickness and roughness of the multilayer films was assessed by potentiometric titrations, dye sorption and atomic force microscopy. Moreover, the cross-linking of PDMAEMA/SA films with a dihalogenated aromatic derivative with high reactivity (α,α'-dichloro-p-xylene) by means of Menshutkin reaction and the stability of the multilayer architecture to repeated treatments with NaOH are demonstrated.

View Article and Find Full Text PDF

Fabrication of novel semi-interpenetrating polymer network (semi-IPN) cryogels by cross-linking polymerization of N,N-dimethylaminoethyl methacrylate (DMAEM) in the presence of either oxidized potato starch (OPS) or oxidized wheat starch (OWS) and their characterization are presented in the paper. The influence of the nature of entrapped polymer on the properties of the composite cryogels was evaluated by the swelling kinetics, FT-IR spectroscopy, scanning electron microscopy, and response at external stimuli such as temperature, pH, and ionic strength. Indomethacin (IDM), taken as a model anti-inflammatory drug, was easily loaded into the composite cryogels by the solvent sorption-evaporation strategy.

View Article and Find Full Text PDF

The aggregation mode of three azo dyes, methyl orange (MO), ponceau SS (PSS), and direct blue 1 (DB1) induced by three 1,4-diazabicyclo[2.2.2]octane (DABCO)-based ionene polymers having different topologies (i.

View Article and Find Full Text PDF

Three-dimensional (3D) biocomposites based on chitosan (CS) and clinoptilolite (CPL) were prepared by cryogelation and their potential application as drug carriers was investigated. Variation of CPL content from 0 to 33wt.% allowed the formation of biocomposites with heterogeneous morphologies consisting of randomly distributed pores.

View Article and Find Full Text PDF

Fast responsive macroporous interpenetrating polymer network (IPN) hydrogels were fabricated in this work by a sequential strategy, as follows: the first network, consisting of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEM) cross-linked with N,N'-methylenebisacrylamide (BAAm), was prepared at -18 °C, the second network consisting of poly(acrylamide) (PAAm) cross-linked with BAAm, being also generated by cryogelation technique. Both single network cryogels (SNC) and IPN cryogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and water uptake. The presence of weak polycation PDMAEM endows the SNCs and the IPNs cryogels with sensitivity at numerous external stimuli such as pH, temperature, ionic strength, electric field, among which the first three were investigated in this work.

View Article and Find Full Text PDF