Objectives: Neuro-inflammation occurs as a sequence of brain injury and is associated with production of cytokines. Cytokines can modulate the function and survival of neurons, microglia and astrocytes. The objective of this study is to examine the effect of TNF on the neurons, microglia and astrocytes in normal brain and stab wound brain injury.
View Article and Find Full Text PDFNeuro-inflammation is associated with the production of cytokines, which influence neuronal and glial functions. Although the proinflammatory cytokines interferon-γ (IFN-γ) and interleukin-1Beta (IL-1β) are thought to be the major mediators of neuro-inflammation, their role in brain injury remains ill-defined. The objective of this study was to examine the effect of IFN-γ and IL-1β on survival of cortical neurons in stab wound injury in mice.
View Article and Find Full Text PDFDibutyryl cyclic adenosine monophosphate (dBcAMP) is a cell-permeable synthetic analog of cyclic adenosine monophosphate (cAMP). Although the elevation of cAMP levels was reported to promote the functional recovery in spinal cord injury, its role in neurogenesis or functional recovery after hippocampal injury is unknown. The objective of the study was to investigate the effects of dBcAMP on learning, memory, and hippocampal neurogenesis in the excitotoxically lesioned hippocampus.
View Article and Find Full Text PDFDibutyryl cyclic adenosine monophosphate (dBcAMP), a cell-permeable synthetic analog of cAMP, has been shown to induce astrogliosis in culture. However, the exact mechanism underlying how dBcAMP exerts its function is not clear. The objective of this study was to examine the effects of dBcAMP on astrogliosis and survival of neurons in stab wound and kainic acid models of brain injury.
View Article and Find Full Text PDF