Publications by authors named "Ebrahimzadeh H"

The need to identify ammonia is necessary because of its harmful effects on the environment and humans. In this study, a colorimetric method was also developed for the detection of ammonia using silver nanoparticles (AgNPs) synthesized with the green approach. Biosynthesis of AgNPs was performed by silver nitrate as a silver precursor and Smyrnium cordifolium extract as a reducing and stabilizing agent.

View Article and Find Full Text PDF

Background: Given the importance of achieving optimal therapeutical concentration in patients treated with antidepressants, this study investigates a novel technique for the simultaneous determination of trazodone (TRZ) and doxepin (DOX) in human plasma and serum samples for the first time.

Results: To achieve simultaneous determination of two antidepressants, TRZ and DOX, a novel detection system was designed: a non-enzymatic voltammetric biosensor based on boron-reduced graphene oxide/manganese oxide nanoparticles (GCE/B-rGO/MnO NPs). The detection was accomplished after pre-concentration and extraction trace amounts of the analytes using the thin film-solid phase microextraction (TF-SPME) technique, which employed polyvinyl alcohol/polyvinyl acetate/copper oxide nanoparticles (PVA/PVAc/CuO NPs) electrospun nanofibers.

View Article and Find Full Text PDF

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert‑butyl ether, MTBE, ethyl tert‑butyl ether, ETBE, and tert‑butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed.

View Article and Find Full Text PDF

Today, the wide utilization of triazole fungicides due to environmental damage and its side effects has raised global concern. Thus, in this investigation, polyacrylonitrile/MnCo-layered double hydroxides nanofiber was synthesized and applied as an effective and novel adsorbent at thin-film solid-phase micro-extraction technique for the quick and concurrent extraction of five triazole fungicides in fruit and vegetable samples before quantitative analysis by high-performance liquid chromatography-ultraviolet. The incorporation of MnCo-layered double hydroxides with porous structure and abundant functional groups in a polymer medium improves the extraction efficiency of nanofibers owing to hydrogen bonding and π-π interactions formed between analytes and synthesized nano-adsorbent.

View Article and Find Full Text PDF

Today, the wide use of triazole fungicides due to environmental damage and its side effects has raised global concern. Hence, in this research, poly-vinyl alcohol/polyacrylic-acid/CoFe-PBA@GO electrospun nanofiber was synthesized and applied as effective, degradable, and novel adsorbent at pipette-tip microextraction (PT-μSPE) method for the rapid and concurrent extraction of five of triazole fungicides in fruit and vegetable samples prior to quantitative analysis by high-performance liquid chromatography-ultraviolet. The incorporation of CoFe-PBA@GO with superporous structure and abundant functional groups in a polymer medium improves the extraction efficiency of nanofibers due to hydrogen bonding and π-π interactions formed between analytes and synthesized nano-adsorbent.

View Article and Find Full Text PDF

The study was performed in two phases. First, the polymerization was carried out upon three magnetized surfaces of silica aerogel, zeolite Y, and MIL-101(Cr). Then, optimal molecularly imprinted polymer and optimal extraction conditions were determined by the central composite design-response surface method.

View Article and Find Full Text PDF

Background: Although NSAIDs possess notable therapeutic and pharmaceutical qualities, it's essential to acknowledge that excessive doses can result in toxicity within the human body. Moreover, the importance lies in identifying and measuring their trace amounts. Due to their existence within intricate matrices, the creation of novel electrospun nanofibers as sorbents for electrically-assisted solidphase microextraction (EA-SPME) becomes vital.

View Article and Find Full Text PDF

Background: Here, it has been discussed about creating a specific and sustainable analytical technique for monitoring anti-diabetic drugs in order to accurately determine the dosage in patients and reduce side effects, remove them from wastewater (as emerging contaminants), and ultimately abate pharmaceutical pollutants in the environment.

Results: In this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-μSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers' mat was synthesized simply via cheap equipment.

View Article and Find Full Text PDF

Today, the widespread use of opioid and analgesic drugs (OAs) has caused global concern due to their addictive properties and side effects. Therefore, in this study, polyvinyl alcohol (PVA)/poly acrylic acid (PAA)/MOF NiCoZn-LDH@graphene oxide (GO) electrospun nanofiber was synthesized and employed as an effective and novel sorbent at thin-film microextraction (TF-μSPE) method for the fast and simultaneous extraction of seven opioid and analgesic drugs in human biological fluids (plasma, urine) before performing quantitative analysis by high-pressure liquid chromatography (HPLC-UV) device. This new nano-absorbent was characterized by energy dispersive X-ray spectrometer (EDX), X-ray photoelectron spectroscope (XPS), Fourier transforms infrared spectrometer (FT-IR), field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), and nitrogen absorption-desorption analysis (BET).

View Article and Find Full Text PDF

Composite nanofibers, namely, polyvinyl alcohol (PVA), citric acid (CA), β-cyclodextrin (β-CD), and copper oxide nanoparticles (PVA/CA/β-cyclodextrin/CuO NPs), were developed as a novel, green, and efficient adsorbent in the pipette tip-micro-solid-phase extraction method (PT-µSPE), for the simultaneous extraction of three antidepressants drugs namely imipramine (IMP), citalopram (CIT), and clozapine (CLZ) in biological fluids before quantification by gas chromatography (GC-FID). Based on the obtained results from field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), the successful synthesis of composite nanofibers was approved. Due to the presence of β-cyclodextrins and CuO NPs rich of functional groups on their surface, the nanofibers have high extraction efficiency.

View Article and Find Full Text PDF

Today, antidepressants are widely used and it is important to determine their trace amounts due to harmful consequences. Here, a new nano sorbent was reported for the simultaneous extraction and determination of three types of antidepressant drugs (Clomipramine (CLO), Clozapine (CLZ), and Trimipramine (TRP) by the thin-film solid-phase micro-extraction (TFME-μSPE) method followed by the Gas Chromatography-flame ionization detector (GC-FID) analysis. So, the compound poly (vinyl alcohol) (PVA)/citric acid(CA)/β-cyclodextrin/BiS@g-CN nano sorbent was constructed by electrospinning technique.

View Article and Find Full Text PDF

Herein, a composite of polyacrylonitrile (PAN)/agar/silver nanoparticles (AgNPs) electrospun nanofibers was fabricated and applied as an efficient sorbent for thin-film micro-extraction (TFME) of five metal ions followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Incorporating agar into the nanofibers followed by in situ photo-reductive reaction under UV-lamp resulted in highly uniform dispersion of AgNPs in the nanofibers. Under the optimized conditions, agreeable linearity was acquired in the range of 0.

View Article and Find Full Text PDF

Herein, the composite of polylactic acid (PLA)/ Iron-based metal-organic framework (r-MIL-88A)/ Cellulose electrospun nanofibers was fabricated; and then, applied as a novel sorbent for thin-film micro-extraction (TFME) of four selected pesticides followed by GC-FID analysis. From the evaluation of scanning electron microscopy, Fourier transform infrared spectroscopy energy dispersive X-ray spectroscopy and X-ray diffraction, the successful fabrication of composite nanaofibers was approved. The presence of r-MIL-88A/Cellulose with large surface area and plenty of OH-functional groups results in improving PLA extraction efficiency.

View Article and Find Full Text PDF

Herein, an electrospun composite from poly(vinyl alcohol) (PVA) and Stevia extract as a cross-linked nanofibrous was prepared with incorporating Fe-metal organic framework@Au nanoparticles (MIL-88A@AuNPs). The final composite was characterized, and then used as an efficient sorbent in pipette-tip micro solid-phase extraction (PT-µSPE) of eight selected pesticides in food samples followed by HPLC-UV analysis. Under the opted conditions, the linearity was in the range of 1.

View Article and Find Full Text PDF

Aims: Celiac disease (CD) is frequent amongst patients with type 1 diabetes mellitus (T1DM). Since there is a disagreement on the optimal interval and frequency to perform screening tests for CD among diabetic patients, this study aimed to evaluate these issues amongst patients with T1DM.

Methods: This retrospective cohort study was conducted in seven referral diabetic centers in different cities of Iran from January 2020 to January 2021.

View Article and Find Full Text PDF

Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD).

View Article and Find Full Text PDF

Electrospun poly(vinyl alcohol)-(PVA)-poly(acrylic acid) (PAA)/carbon nanotubes(CNTs)-cellulose nanocrystal (CNC) (PVA-PAA/CNT-CNC) composite nanofibers were prepared and characterized using Fourier transform-infrared spectroscopy and field emission scanning electron microscopy. The resultant composite was used as an effective and novel sorbent for pipette-tip micro-solid phase extraction (PT-μSPE) of seven opioid analgesics (OAs) in biological samples followed by HPLC-UV analysis. Addition of CNT-CNC with the high specific surface area and plenty of OH-functional groups endows the nanofibers with considerable extraction efficiency.

View Article and Find Full Text PDF

Herein, a novel magnetic porous carbon nanocomposite derived from a cobalt based-metal-organic framework was synthesized and evaluated for simultaneous preconcentration of homo and hetero-polycyclic aromatic hydrocarbons. Briefly, magnetite nanoparticles (MNPs) were synthesized and then were coated with a metal-organic framework layer. Finally, the magnetic nanocomposite was carbonized under an inert atmosphere to obtain the magnetic porous carbon (MPC).

View Article and Find Full Text PDF

An online micro solid-phase extraction (online-µSPE) using electrospun nanofibers, as an efficient sorbent, was developed to extract chlorobenzenes (CBs) from paddy soil, agricultural wastewater, and food samples (fruit juices, vegetables, rice samples) followed by high performance liquid chromatography analysis. Electrospun nanofibers were fabricated using a nanocomposite containing polyacrylonitrile and Zn-metal organic framework 74 @graphene oxide (PAN/Zn-MOF-74@GO), and subsequently characterized. Under the optimal conditions, acceptable linearity was obtained in the range of 0.

View Article and Find Full Text PDF

Herein, an electrospun polyacrylonitrile/nickel-based metal-organic framework nanocomposite (PAN/Ni-MOF) coating on a stainless steel wire was synthesized and employed as a novel nanosorbent for headspace solid-phase microextraction (HS-SPME) of organophosphorus pesticides (OPPs), diazinon (DIZ), and chlorpyrifos (CPS) from the diverse aqueous media followed by corona discharge ion mobility spectrometry (CD-IMS). Under the optimum experimental conditions, the calibration plots were linear in the range of 1.0-250.

View Article and Find Full Text PDF

This study describes the synthesis of a novel polymer (polypyrrole-polythiophene) coated magnetic porous carbon (MPC) composite derived from magnetic metal-organic framework (MOF) and its utilization in multi-target environmental pollutants preconcentration. In this regards, FeO nanoparticles (NPs) was used as magnetic core and Co-MOF-71 was coated on the surface of the NPs. Afterwards, magnetic MOF (MMOF) was carbonized under nitrogen atmosphere and finally MNC was coated with a polymer layer of the type polypyrrole-polythiophene to obtain the nanocomposite (MPC@PPy-PTh).

View Article and Find Full Text PDF

The aim of this research was to gauge the alternations in the lipid peroxidation and antioxidative enzyme activity in two cultivars (cv. RGS003 and cv. Sarigol) of canola under drought stress and drought tolerance amelioration by penconazole (PEN) and calcium (Ca).

View Article and Find Full Text PDF

The synthesis of three kinds of sorbents is described. The first kind was a hydrophobic nanofiber as a specific sorbent for non-polar compounds. The second one was a hydrophilic nanofiber as a specific sorbent for polar compounds and the third one was a generic sorbent synthesized from hydrophilic and hydrophobic compounds.

View Article and Find Full Text PDF

Global warming, as a result of atmospheric CO increase, is regarded as an important universal concern. Microalgae are considered as appropriate microorganisms for CO assimilation. Here we aimed to investigate carbon biofixation ability of two indigenous isolates of Dunaliella spp.

View Article and Find Full Text PDF