This study aimed to reduce the risk of graft occlusion by evaluating the two-phase flow of blood and LDL nanoparticles in coronary artery grafts. The study considered blood as an incompressible Newtonian fluid, with the addition of LDL nanoparticles, and the artery wall as a porous medium. Two scenarios were compared, with constant inlet velocity (CIV) and other with pulsatile inlet velocity (PIV), with LDL nanoparticles experiencing drag, wall-induced lift, and induced Saffman lift forces, or drag force only.
View Article and Find Full Text PDFThis article, examines the flow of argon inside a nanochannel with respect to the molecular dynamics (MD) in the free molecular flow regime using LAMMPS software. The nanochannel is made of copper featuring a square cross-section and obstacles of varying dimensions and values. In this study, the flow of argon fluid is three-dimensional.
View Article and Find Full Text PDFObjectives: Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies.
Materials And Methods: A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes.
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue.
View Article and Find Full Text PDFMolecular dynamics simulations of static argon gas at three different levels of rarefaction are conducted for a channel of 5.4 nm height to investigate the simultaneous effect of the wall force field and the gas temperature on the stress distribution along the channel height. Using the interactive thermal wall model, different temperatures are applied on the channel walls to be able to investigate the effect of the wall temperature and the induced heat flux through the gas medium on the stress distribution.
View Article and Find Full Text PDFThe structure-function relation is one of the oldest hypotheses in biology and medicine; i.e., form serves function and function influences form.
View Article and Find Full Text PDFFrostbite is considered the severest form of cold injury and can lead to necrosis and loss of peripheral appendages. Therefore, prediction of endurance time of limb's tissue in cold condition is not only necessary but also crucial to estimate cold injury intensity and to choose appropriate clothing. According to the previous work which applied a 3-D thermal model for human finger to analyze cold stress, in this study, an expression is presented for endurance time in cold conditions to prevent cold injury.
View Article and Find Full Text PDFThe existing computational models of frostbite injury are limited to one and two dimensional schemes. In this study, a coupled thermo-fluid model is applied to simulate a finger exposed to cold weather. The spatial variability of finger-tip temperature is compared to experimental ones to validate the model.
View Article and Find Full Text PDFSpecifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure.
View Article and Find Full Text PDFDiverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution.
View Article and Find Full Text PDFIn the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered.
View Article and Find Full Text PDF