Publications by authors named "Ebrahim Saied"

Background: The relationship between chronic hepatitis B (CHB) infection and natural killer (NK) cell dysfunction is well-established, but the specific role of HBV viral antigens in driving NK cell impairment in patients with CHB remains unclear. This study investigates the modulatory effects of hepatitis B virus subviral particles (HBVsvp, a representative model for HBsAg) on the phenotypic regulation (activating and inhibitory receptors), cytokine production and cytotoxic potential of peripheral blood mononuclear cell-derived natural killer cells (PBMCs-derived NK cell), which contributes to NK cell dysfunction in CHB infection, potentially serving as an effective HBV immune evasion strategy by the virus.

Methods: NK cells were isolated from peripheral blood of patients with CHB (n=5) and healthy individuals (n=5), stimulated with HBVsvp.

View Article and Find Full Text PDF

This study utilized to produce selenium nanoparticles (Se-NPs) in an environmentally friendly and ecologically sustainable manner, targeting several medicinal applications. These biosynthesized Se-NPs were meticulously characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), and UV-visible spectroscopy (UV), revealing their spherical shape and size ranging between 28 and 78 nm. We conducted further testing of Se-NPs to evaluate their potential for biological applications, including antiviral, anticancer, antibacterial, antioxidant, and antibiofilm activities.

View Article and Find Full Text PDF

To evaluate the phytochemical composition, antibacterial, and antioxidant activity of successive extracts of L. () aerial flowering parts, they were assessed in vitro. Using a spectrophotometer, the sample absorbance at 517 nm was used to quantify the scavenging activity.

View Article and Find Full Text PDF

: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. : In this study, fifty urine samples were collected from patients suffering from UTI.

View Article and Find Full Text PDF

: is a primary pathogen responsible for dental abscesses, which cause inflammation and pain when trapped between the crown and soft tissues of an erupted tooth. Therefore, this study aims to use specific phages as an alternative method instead of classical treatments based on antibiotics to destroy multidrug-resistant bacteria for treating dental issues. : In the current study, twenty-five bacterial isolates were obtained from infected dental specimens; only five had the ability to grow on bile esculin agar, and among these five, only two were described to be extensive multidrug-resistant isolates.

View Article and Find Full Text PDF

In the current study, endophytic was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm.

View Article and Find Full Text PDF

Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe.

View Article and Find Full Text PDF

One of the most hazardous diseases that influences human health globally is microbial infection. Therefore, bimetallic nanoparticles have received much attention for controlling microbial infections in the current decade. In the present study, bimetallic selenium-silver nanoparticles (Se-Ag NPs) were effectively biosynthesized using watermelon rind WR extract through the green technique for the first time.

View Article and Find Full Text PDF

Nanotechnology is playing a critical role in several essential technologies with nanoscale structures (nanoparticles) in areas of the environment and biomedicine. In this work, the leaf extract of was utilized to biosynthesize zinc oxide nanoparticles (ZnONPs) for the first time and evaluated for antimicrobial and photocatalytic activities. Different experimental methods were used to characterize the biosynthesized ZnONPs.

View Article and Find Full Text PDF

The peel aqueous extract of was utilized to fabricate zinc oxide nanoparticles (ZnO-NPs) as a green approach. The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy, which was attached to an energy dispersive X-ray (SEM-EDX). Spherical, well arranged, and crystallographic structures of ZnO-NPs were formed with sizes of 10-45 nm.

View Article and Find Full Text PDF

The green synthesis of selenium nanoparticles (Se NPs) had been synthesized by pomegranate peel extract (PPE). The antimicrobial, antioxidant, and anticancer activities of the synthesized Se NPs, as well as their hemocompatibility, were investigated. Se NPs were characterized by UV-Vis.

View Article and Find Full Text PDF

The threats to the life and production of crops are exacerbated by climate change and the misuse of chemical pesticides. This study was designed to evaluate the effectiveness of biosynthesized silica nanoparticles (SiO-NPs) as an alternative to pesticides against early blight disease of eggplant. Antifungal activity, disease index, photosynthetic pigments, osmolytes, oxidative stress, antioxidant enzymes activities were tested for potential tolerance of eggplant infected with .

View Article and Find Full Text PDF

Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.

View Article and Find Full Text PDF

The toxicity of the ecosystem has increased recently as a result of the increased industrial wastewater loaded with organic contaminants, including methylene blue (MB), which exerts serious damage to the environment. Thus, the present work aims to green the synthesis of silver nanoparticles (Ag-NPs) and to evaluate their degradability of notorious MB dye, as well as their antimicrobial activities. Ag-NPs were synthesized by extract fully characterized by UV-vis, TEM, DLS, XRD, and FTIR.

View Article and Find Full Text PDF

Nanoparticles (NPs) and nanomaterials (NMs) are now widely used in a variety of applications, including medicine, solar energy, drug delivery, water treatment, and pollution detection. Hematite (α-FeO) nanoparticles (Hem-NPs) were manufactured in this work by utilizing a cost-effective and ecofriendly approach that included a biomass filtrate of AH1 as a bio-reducer. The structural and optical properties of Hem-NPs were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible and Fourier-transform infrared (FTIR) spectroscopies.

View Article and Find Full Text PDF

Herein, bacterial isolate HIS7 was obtained from contaminated soil and exhibited high efficacy to degrade pyrethroid insecticide cypermethrin. The HIS7 isolate was identified as based on its morphology and physiology characteristics as well as sequencing of 16S rRNA. The biodegradation percentages of 2500 ppm cypermethrin increased from 57.

View Article and Find Full Text PDF

The metabolites of the fungal strain were used as a biocatalyst for the green-synthesis of magnesium oxide nanoparticles (MgO-NPs). The production methodology was optimized to attain the maximum productivity as follows: 4 mM of precursor, at pH 8, incubation temperature of 35 °C, and reaction time of 36 h between metabolites and precursor. The as-formed MgO-NPs were characterized by UV-Vis spectroscopy, TEM, SEM-EDX, XRD, DLS, FT-IR, and XPS analyses.

View Article and Find Full Text PDF

The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by . The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb6i40kc2oa8pco79annv4fv4pt984jmb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once