Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g.
View Article and Find Full Text PDFUnderstanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales.
View Article and Find Full Text PDFCharge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood.
View Article and Find Full Text PDFAs an emerging single elemental layered material with a low symmetry in-plane crystal lattice, black phosphorus (BP) has attracted significant research interest owing to its unique electronic and optoelectronic properties, including its widely tunable bandgap, polarization-dependent photoresponse and highly anisotropic in-plane charge transport. Despite extensive study of the steady-state charge transport in BP, there has not been direct characterization and visualization of the hot carriers dynamics in BP immediately after photoexcitation, which is crucial to understanding the performance of BP-based optoelectronic devices. Here we use the newly developed scanning ultrafast electron microscopy (SUEM) to directly visualize the motion of photoexcited hot carriers on the surface of BP in both space and time.
View Article and Find Full Text PDFThe ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusivity up to 1,000 times higher than the room temperature value, D≈30 cms.
View Article and Find Full Text PDFHollow silica particles (HSPs) have become the focus of interest in many laboratories recently, because of their versatility, stemming from the ability to control their size and shape, as well as surface functionalization. Determining the mechanical stability of hollow particles is essential for their use, both in applications in which they need to retain their structure, as well as those in which they need to break down. We have synthesized a series of HSPs (inner diameter of 231 nm) with increasing wall thickness (7-25 nm), using a template approach.
View Article and Find Full Text PDFThe dynamics of charge transfer at interfaces are fundamental to the understanding of many processes, including light conversion to chemical energy. Here, we report imaging of charge carrier excitation, transport, and recombination in a silicon p-n junction, where the interface is well defined on the nanoscale. The recorded images elucidate the spatiotemporal behavior of carrier density after optical excitation.
View Article and Find Full Text PDFThe C 1s inner shell excitation spectra of individual metallic and semiconducting single-walled carbon nanotubes (SWCNTs) were measured using high-resolution electron energy loss spectroscopy in an aberration-corrected transmission electron microscope (TEM-EELS). On the basis of its diameter, the metallic SWCNT is most likely a (10,10) sample, whereas (11,12) and a number of other chiral vectors are consistent with the diameter of the semiconducting SWCNTs. The C 1s X-ray absorption spectra of the same electronically pure SWCNT materials were measured as individual bundles or agglomerations of bundles by scanning transmission X-ray microscopy.
View Article and Find Full Text PDFThe presence of defects in carbon nanotubes strongly modifies their electrical, mechanical, and chemical properties. It was long thought undesirable, but recent experiments have shown that introduction of structural defects using ion or electron irradiation can lead to novel nanodevices. We demonstrate a method for detecting and quantifying point defect density in individual carbon nanotubes (CNTs) based on measuring the polarization dependence (linear dichroism) of the C 1s --> pi* transition at specific locations along individual CNTs with a scanning transmission X-ray microscope (STXM).
View Article and Find Full Text PDFThe C 1s X-ray absorption spectra of several isolated bundles of single-walled carbon nanotubes (SWCNT) have been measured using scanning transmission X-ray microscopy. First the C 1s and O 1s spectra of a purified but unfunctionalized SWCNT were measured. The C 1s --> pi* transition at 285 eV exhibited almost as strong a dichroic effect (spectral dependence on orientation) as that found in multiwalled carbon nanotubes (Najafi; et al.
View Article and Find Full Text PDFThe polarization dependence (linear dichroism) of the C 1s X-ray absorption spectrum of individual multi-walled carbon nanotubes (MWCNTs) is measured using scanning transmission X-ray microscopy. A very strong dichroic effect is found in the C 1s --> pi* transition, with almost complete disappearance of this transition when the electric-field (E)-vector is aligned parallel to high-quality (low-defect) MWCNTs and maximum intensity when the E-vector is orthogonal to the tube axis. In contrast, there is very little dichroism in the C 1s --> sigma* transitions.
View Article and Find Full Text PDF