Publications by authors named "Ebrahim Ghasemy"

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

The COVID-19 pandemic, known as coronavirus pandemic, a global pandemic, emerged from the beginning of 2020 and became dominant in many countries. As COVID-19 is one of the deadliest pandemics in history and has a high rate of distribution, a fast and extensive reaction was needed. Considering its composition, revealing the infection mechanism is beneficial for effective decisions against the spread and attack of COVID-19.

View Article and Find Full Text PDF

Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic--glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally.

View Article and Find Full Text PDF

The emerging environmental issues necessitate the engineering of novel and well-designed nanoadsorbents for advanced separation and purification applications. Despite recent advances, the facile synthesis of hierarchical micro-mesoporous metal-organic frameworks (MOFs) with tuned structures has remained a challenge. Herein, we report a simple defect engineering approach to manipulate the framework, induce mesoporosity, and crease large pore volumes in MIL-101(Cr) by embedding graphene quantum dots (GQDs) during its self-assembly process.

View Article and Find Full Text PDF

Herein, based on the paramount importance of combating emerging diseases, through employing a detailed in-silico study, the possibility of using MXenes in suppressing the coronavirus infection was elucidated. To this end, first, interactions of MXene nanosheets (MnC, TiC, and MoC) and spike protein (SP), the main infecting portion of the COVID-19, were investigated. It was found that the modeled MXenes were effective in attracting the SP, so that they can be exploited in filtering the coronavirus.

View Article and Find Full Text PDF

Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life.

View Article and Find Full Text PDF

Materials science can pave the way toward developing novel devices at the service of human life. In recent years, computational materials engineering has been promising in predicting material performance prior to the experiments. Herein, this capability has been carefully employed to tackle severe problems associated with kidney diseases through proposing novel nanolayers to adsorb urea and accordingly causing the wearable artificial kidney (WAK) to be viable.

View Article and Find Full Text PDF

Purpose: The aim of this study was to introduce a smart and responsive drug carrier for Doxorubicin (DOX) and Paclitaxel (PAX) for desirable therapeutic application.

Method: Loading and releasing of DOX and PAX from smart and pH-sensitive functionalized single-walled carbon nanotube (SWCNTs) and graphene carriers have been simulated by molecular dynamics. The influences of chitosan polymer on proposed carriers have been studied, and both carriers were functionalized with carboxyl groups to improve the loading and releasing properties of the drugs.

View Article and Find Full Text PDF

The Doxorubicin (DOX) and Paclitaxel (PAX) are widely used for cancer-therapy. Herein, in the efforts devoted to developing smart drug carriers, the loading and releasing of the DOX and PAX on the pH sensitive functionalized Fullerene carrier was investigated by molecular dynamics (MD) simulations. The effects of chitosan polymer as a functionalizing agent of the Fullerene carrier was also studied.

View Article and Find Full Text PDF

Selective oxidation of HS to elemental sulfur is a low cost and highly efficient process for sulfur removal from HS-containing hydrocarbon streams in medium scale (i.e. 0.

View Article and Find Full Text PDF

In this study, SnO quantum dots-fullerene (SnO QDs-C) nanohybrid as novel sensing material was synthesized by a simple hydrothermal method. The structure and morphology of the synthesized sample were studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared hybrid was used as gas sensors for detection of different gasses including 70 ppm HS, 1% methane, and 1% propane at low temperatures of 100-200 °C.

View Article and Find Full Text PDF