Photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM) can easily distinguish between organic molecules adsorbed in crystallites or in the wetting layers as well as the bare metal substrate due to their different electronic properties. Already before (and during) the condensation of such solid phases (2D islands or 3D crystallites), there is a dilute 2D gas phase. Such a 2D gas phase consists of molecules, which are highly mobile and diffuse across the surface.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
June 2018
Perfluoropentacene (PFP) is an organic material that has been widely studied over the last years and has already found applications in organic electronics. However, fundamental physical questions, such as the structural formation and the preferential orientation of the molecules during deposition on metal surfaces, are still not fully understood. In this work, we report on a unique in-plane molecular reorientation during the completion of the first monolayer of PFP on the Ag(110) surface.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2015
Photoelectron emission microscopy (PEEM) and differential (optical) reflectance spectroscopy (DRS) have proven independently to be versatile analytical tools for monitoring the evolution of organic thin films during growth. In this paper, we present the first experiment in which both techniques have been applied simultaneously and synchronously. We illustrate how the combined PEEM and DRS results can be correlated to obtain an extended perspective on the electronic and optical properties of a molecular film dependent on the film thickness and morphology.
View Article and Find Full Text PDFIn this study, we used photo electron emission microscopy (PEEM) to investigate the growth of α-sexithiophene (α-6 T) on Ag(111) surfaces. The experiments were carried out with linearly polarized ultraviolet-light (Hg lamp with hν=4.9 eV) in order to probe the alignment of the molecules on the surface.
View Article and Find Full Text PDF