Publications by authors named "Ebrahim Ghaderpour"

Human activity recognition is known as the backbone of the development of interactive systems, such as computer games. This process is usually performed by either vision-based or depth sensors. So far, various solutions have been developed for this purpose; however, all the challenges of this process have not been completely resolved.

View Article and Find Full Text PDF

In this paper, a model free control method for a class of discrete time nonlinear systems is introduced. A type-3 fuzzy system estimates the unknown parameters required by the control system. The control system only uses the input and output data of the plant and therefore does not need to know its mathematical equations.

View Article and Find Full Text PDF

The use of linear array pushbroom images presents a new challenge in photogrammetric applications when it comes to transforming object coordinates to image coordinates. To address this issue, the Best Scanline Search/Determination (BSS/BSD) field focuses on obtaining the Exterior Orientation Parameters (EOPs) of each individual scanline. Current solutions are often impractical for real-time tasks due to their high time requirements and complexities.

View Article and Find Full Text PDF

Chaos theory offers a new way to investigate variations in financial markets data that cannot be obtained with traditional methods. The primary approach for diagnosing chaos is the existence of positive small Lyapunov views. The positive Lyapunov index indicates the average instability and the system's chaotic nature.

View Article and Find Full Text PDF

Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain-computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm.

View Article and Find Full Text PDF

Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction methods has been proposed.

View Article and Find Full Text PDF

In many studies regarding the field of malaria, environmental factors have been acquired in single-time, multi-time or a short-time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of larvae can be effective in better and faster control of malaria outbreaks. In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with a history of malaria prevalence were estimated.

View Article and Find Full Text PDF

Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide significant value in land use and land cover (LULC) classification. The new advances in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal information for LULC classification. Moreover, diverse disciplines of science, including remote sensing, have utilised tremendous improvements in image classification involving convolutional neural networks (CNNs) with transfer learning.

View Article and Find Full Text PDF