Publications by authors named "Ebling F"

The main objective of this study was to evaluate the effects of supplementation the diet of pigs with grape pomace preserved in silage form (GPS) and its interaction with indoor and outdoor production systems, with and without access to vegetation, on the attributes of meat quality produced. Analyzes of proximal composition, cholesterol content, fatty acid profile, shear force, texture profile and sensory analysis were performed. During cold storage, oxidative stability and objective color were analyzed.

View Article and Find Full Text PDF

Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes.

View Article and Find Full Text PDF

Therapeutic activation of thermogenic brown adipose tissue (BAT) may be feasible to prevent, or treat, cardiometabolic disease. However, rodents are commonly housed below thermoneutrality (~20 °C) which can modulate their metabolism and physiology including the hyperactivation of brown (BAT) and beige white adipose tissue. We housed animals at thermoneutrality from weaning to chronically supress BAT, mimic human physiology and explore the efficacy of chronic, mild cold exposure (20 °C) and β3-adrenoreceptor agonism (YM-178) under these conditions.

View Article and Find Full Text PDF

We previously reported that growth promoter-induced skeletal muscle hypertrophy co-ordinately upregulated expression of genes associated with an integrated stress response (ISR), as well as potential ISR regulators. We therefore used Adeno-Associated Virus (AAV)-mediated overexpression of these genes, individually or in combination, in mouse skeletal muscle to test whether they induced muscle hypertrophy. AAV of each target gene was injected into mouse Tibialis anterior (TA) and effects on skeletal muscle growth determined 28 days later.

View Article and Find Full Text PDF

Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and naturalist who was a seminal figure in developing our understanding of the neuroendocrine mechanisms underlying seasonal rhythmicity.

View Article and Find Full Text PDF

Tanycytes are glial cells in the hypothalamus that are functionally part of the blood-brain barrier. They can sense nutrients and metabolites in the circulation such as glucose, then signal to neuronal systems to influence ingestive behaviour and energy storage, and ultimately affect body weight. The complex structure of tanycytes underpins this function, and communication is dependent upon connexin-43 gap junctions between tanycytes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Khat (Catha edulis (Vahl) Forssk.) is a herb from the Celastraceae family (also known as qat, gaad, or mirra) that is widely-consumed in East Africa and in the Arabian peninsula. The green leaves and small stems are consumed primarily at recreational and social gatherings, and medicinally for their antidiabetic and appetite-suppression effects.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how exercise training affects brown (BAT) and white adipose tissue (WAT) in obese rats kept at thermoneutrality (28°C), focusing on the metabolic changes that occur in these tissues during inactivity.
  • - After 4 weeks of swim training, exercise was found to reduce weight gain in the rats without changing total fat mass or thermogenic gene expression but showed significant alterations in metabolic processes and protein levels related to skeletal muscle physiology in BAT.
  • - The results suggest that exercise induces an oxidative signature in BAT independent of traditional thermogenic pathways, indicating a new mechanism of BAT regulation through exercise training that may not rely on the activation of UCP1, a key protein in fat metabolism.
View Article and Find Full Text PDF

Objective: Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate.

View Article and Find Full Text PDF

TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is a protein highly synthesized in the liver that exerts paracrine and endocrine control of many aspects of energy homeostasis in multiple tissues. In preclinical models of obesity and type 2 diabetes, treatment with FGF21 improves glucose homeostasis and promotes weight loss, and, as a result, FGF21 has attracted considerable attention as a therapeutic agent for the treatment of metabolic syndrome in humans. An improved understanding of the biological role of FGF21 may help to explain why its therapeutic potential in humans has not been fully realized.

View Article and Find Full Text PDF

We previously identified PEPCK-M (encoded by the Pck2 gene) to be highly up-regulated in skeletal muscle of pigs treated with Ractopamine, an anabolic beta-adrenergic receptor agonist. To determine whether PEPCK-M had a causative role in modulating the skeletal muscle growth response to Ractopamine, we used adeno-associated virus 1 (AAV1) to over-express Pck2 (AAV-Pck2) in murine skeletal muscle. A contralateral limb design was employed, such that each mouse served as its own control (injected with a GFP-only expressing AAV1, labelled AAV-GFP).

View Article and Find Full Text PDF

Synthesis of triiodothyronine (T) in the hypothalamus induces marked seasonal neuromorphology changes across taxa. How species-specific responses to T signaling in the CNS drive annual changes in body weight and energy balance remains uncharacterized. These experiments sequenced and annotated the Siberian hamster () genome, a model organism for seasonal physiology research, to facilitate the dissection of T-dependent molecular mechanisms that govern predictable, robust, and long-term changes in body weight.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear.

View Article and Find Full Text PDF

Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle.

View Article and Find Full Text PDF

Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan.

View Article and Find Full Text PDF

Previously, we highlighted induction of an integrated stress response (ISR) gene program in skeletal muscle of pigs treated with a beta-adrenergic agonist. Hence we tested the hypothesis that the ER-stress inhibitor, sodium 4-phenylbutyrate (PBA), would inhibit Clenbuterol-mediated muscle growth and reduce expression of genes that are known indicators of an ISR in mice. Clenbuterol (1mg/kg/day) administered to C57BL6/J mice for 21 days increased body weight (p<0.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? The role of FGF21 as an exercise-induced myokine remains controversial. The aim of this study was to determine whether eccentric exercise would augment the release of FGF21 and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. What is the main finding and its importance? Eccentric exercise does not release total or bioactive FGF21 from human skeletal muscle.

View Article and Find Full Text PDF

Biomedical research is dominated by relatively few nonhuman animals to investigate healthy and disease conditions. Research has overrelied on these models due to their well-described genomes, the capability to control specific genes, and the high rate of reproduction. However, recent advances in large-scale molecular sequencing experiments have revealed, in some cases, the limited similarities in experimental outcomes observed in common rodents (i.

View Article and Find Full Text PDF

Studies from a number of areas of neuroendocrinology indicate that hypothalamic tanycytes play a key role in control of energy metabolism. First, profound annual changes in gene expression have been identified in these unusual glial cells in seasonal mammals, for example in genes relating to the transport and metabolism of thyroid hormone into the hypothalamus. The consequent changes in local thyroid hormone availability in the hypothalamus have been shown experimentally to regulate annual cycles in energy intake, storage and expenditure in seasonal species.

View Article and Find Full Text PDF

The adipokine leptin regulates energy balance, appetite, and reproductive maturation. Leptin also acts on bone growth and remodeling, but both osteogenic and anti-osteogenic effects have been reported depending on experimental conditions. Siberian hamsters () have natural variation in circulating leptin concentrations, where serum leptin is significantly decreased during the short day (SD)-induced winter state.

View Article and Find Full Text PDF

Cytochrome P450 4x1 (Cyp4x1) is expressed at very high levels in the brain but the function of this protein is unknown. It has been hypothesised to regulate metabolism of fatty acids and to affect the activity of endocannabinoid signalling systems, which are known to influence appetite and energy metabolism. The objective of the present investigation was to determine the impact of Cyp4x1 on body weight and energy metabolism by developing a line of transgenic Cyp4x1-knock out mice.

View Article and Find Full Text PDF

The increased prevalence of obesity and its cardiometabolic implications demonstrates the imperative to identify novel therapeutic targets able to effect meaningful metabolic changes in this population. Antibody-mediated targeting of fibroblast growth factor receptor 1c isoform (FGFR1c) has been shown to ameliorate hyperglycemia and protect from diet- and genetically-induced obesity in rodents and nonhuman primates. However, it is currently unknown which tissue(s) contribute to this glucose-lowering effect.

View Article and Find Full Text PDF

Context: Fibroblast growth factor 21 (FGF21) secretion has been shown to respond directly to carbohydrate consumption, with glucose, fructose, and sucrose all reported to increase plasma levels of FGF21 in rodents and humans. However, carbohydrate consumption also results in secretion of insulin.

Objective: The aim of this study was to examine the combined and independent effects of hyperglycemia and hyperinsulinemia on total and bioactive FGF21 in the postprandial period in humans, and determine whether this effect is attenuated in conditions of altered insulin secretion and action.

View Article and Find Full Text PDF