Background: Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting 'normal' mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes In this study we amplified mt-genomes from 1,645 single mitochondria (mts) isolated from mouse single astrocytes and neurons to 1. determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, 2.
View Article and Find Full Text PDFThere is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells.
View Article and Find Full Text PDFThere is growing interest in understanding the biological implications of single cell heterogeneity and intracellular heteroplasmy of mtDNA, but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells.
View Article and Find Full Text PDFGenomic DNA (gDNA) undergoes structural interconversion between single- and double-stranded states during transcription, DNA repair and replication, which is critical for cellular homeostasis. We describe "CHEX-seq" which identifies the single-stranded DNA (ssDNA) in situ in individual cells. CHEX-seq uses 3'-terminal blocked, light-activatable probes to prime the copying of ssDNA into complementary DNA that is sequenced, thereby reporting the genome-wide single-stranded chromatin landscape.
View Article and Find Full Text PDFWe argue that the study of single-cell subcellular organelle omics is needed to understand and regulate cell function. This requires and is being enabled by new technology development.
View Article and Find Full Text PDFAstrocytes play a critical role in brain function, but their contribution during ethanol (EtOH) consumption remains largely understudied. In light of recent findings on the heterogeneity of astrocyte physiology and gene expression, an approach with the ability to identify subtypes and capture this heterogeneity is necessary. Here, we combined measurements of calcium signaling and gene expression to define EtOH-induced astrocyte subtypes.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have attracted enormous attention for their diagnostic and therapeutic potential. However, it has proven challenging to achieve the sensitivity to detect individual nanoscale EVs, the specificity to distinguish EV subpopulations, and a sufficient throughput to study EVs among an enormous background. To address this fundamental challenge, we developed a droplet-based optofluidic platform to quantify specific individual EV subpopulations at high throughput.
View Article and Find Full Text PDFLight activation is an effective way to impart spatiotemporal control over oligonucleotide probes that are widely applied for gene expression regulation and target function investigation. Among the major oligonucleotide caging strategies, cyclization with a photocleavable linker is an elegant design, which affords both atom efficiency and stability in many biological environments. Here, we introduce an improved protocol for circular oligonucleotide synthesis requiring only one round of HPLC purification.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Analysis of single-cell transcriptomes shows the single-cell heterogeneity between cells within a population which is vital to our understanding of normal function and disease development. To obtain single-cell transcriptome profiling, however, the poly-A RNA must be accurately isolated from the target cell. We developed a single-cell analysis procedure called transcriptome in vivo analysis (TIVA), which will allow accurate characterization of targeted cell-specific transcriptomes from live tissue.
View Article and Find Full Text PDFThis article has been withdrawn due to an error that caused the article to be duplicated. The definitive version of this article is published under DOI 10.1093/neuros/nyab288.
View Article and Find Full Text PDFEthanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes.
View Article and Find Full Text PDFCells are complex machines whose behaviors arise from their internal collection of dynamically interacting organelles, supramolecular complexes, and cytoplasmic chemicals. The current understanding of the nature by which subcellular biology produces cell-level behaviors is limited by the technological hurdle of measuring the large number (>10 ) of small-sized (<1 μm) heterogeneous organelles and subcellular structures found within each cell. In this review, the emergence of a suite of micro- and nano-technologies for studying intracellular biology on the scale of organelles is described.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Single-cell analysis has contributed greatly to gaining a better understanding of human brain function and has implications for neurodegenerative and neuropsychiatric disorders. Long noncoding RNAs (lncRNAs) acting, in part, as epigenetic regulators exist in brain cells in high abundance exhibiting a large diversity that play important roles in neural development, function, and neurodegenerative disease. Due to lncRNA tissue-type and cell-type specific expression characteristics, it is important to analyze lncRNA at single-cell resolution.
View Article and Find Full Text PDFMessenger RNA (mRNA) isolated from single cells can generate powerful biological insights, including the discovery of new cell types with unique functions as well as markers potentially predicting a cell's response to various therapeutic agents. We previously introduced an oligonucleotide-based technique for site-selective, photoinduced biotinylation and capture of mRNA within a living cell called transcriptome analysis (TIVA). Successful application of the TIVA technique hinges upon its oligonucleotide probe remaining completely inert (or "caged") to mRNA unless photoactivated.
View Article and Find Full Text PDFLight-activated ("caged") oligonucleotides provide a strategy for modulating the activity of antisense oligos, siRNA, miRNA, aptamers, DNAzymes, and mRNA-capturing probes with high spatiotemporal resolution. However, the near-UV and visible wavelengths that promote these bond-breaking reactions poorly penetrate living tissue, which limits some biological applications. To address this issue, we describe the first example of a protease-activated oligonucleotide probe, capable of reporting on caspase-3 during cellular apoptosis.
View Article and Find Full Text PDFAs the Brain Research through Advancing Neurotechnologyies, better known as the BRAIN Initiative moves forward at a rapid pace increasing attention has focused on neuroethics. The National Institutes of Health recently mandated a review of the progress of the BRAIN Initiative progress with the goal of fine-tuning its future directions. The BRAIN Working Group 2 focused its discussion on science while the BRAIN Neuroethics Subgroup focused on neuroethics.
View Article and Find Full Text PDFThe prefrontal cortex (PFC) plays a key role in higher order cognitive functions and psychiatric disorders such as autism, schizophrenia, and depression. In the PFC, the two major classes of neurons are the glutamatergic pyramidal (Pyr) cells and the GABAergic interneurons such as fast-spiking (FS) cells. Despite extensive electrophysiological, morphological, and pharmacological studies of the PFC, the therapeutically utilized drug targets are restricted to dopaminergic, glutamatergic, and GABAergic receptors.
View Article and Find Full Text PDFHeart regeneration requires cardiomyocyte proliferation. It is thought that formation of polyploid nuclei establishes a barrier for cardiomyocyte proliferation, but the mechanisms are largely unknown. Here, we show that the nuclear lamina filament Lamin B2 (Lmnb2), whose expression decreases in mice after birth, is essential for nuclear envelope breakdown prior to progression to metaphase and subsequent division.
View Article and Find Full Text PDFDuring early avian development, primordial germ cells (PGC) are highly migratory, moving from the central area pellucida of the blastoderm to the anterior extra-embryonic germinal crescent. The PGCs soon move into the forming blood vessels by intravasation and travel in the circulatory system to the genital ridges where they participate in the organogenesis of the gonads. This complex cellular migration takes place in close association with a nascent extracellular matrix that matures in a precise spatio-temporal pattern.
View Article and Find Full Text PDFBackground: RNA localization involves cis-motifs that are recognized by RNA-binding proteins (RBP), which then mediate localization to specific sub-cellular compartments. RNA localization is critical for many different cell functions, e.g.
View Article and Find Full Text PDF