Bloch states of electrons in honeycomb two-dimensional crystals with multivalley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic field lifts the valley degeneracy via a Zeeman effect due to these magnetic moments, leading to magnetoelectric effects which can be leveraged for creating valleytronic devices. In this work, we demonstrate that trilayer graphene with Bernal stacking (ABA TLG), hosts topological magnetic moments with a large and widely tunable valley g factor (g_{ν}), reaching a value g_{ν}∼1050 at the extreme of the studied parametric range.
View Article and Find Full Text PDFElectrostatically defined quantum dots (QDs) in Bernal stacked bilayer graphene (BLG) are a promising quantum information platform because of their long spin decoherence times, high sample quality, and tunability. Importantly, the shape of QD states determines the electron energy spectrum, the interactions between electrons, and the coupling of electrons to their environment, all of which are relevant for quantum information processing. Despite its importance, the shape of BLG QD states remains experimentally unexamined.
View Article and Find Full Text PDF