Publications by authors named "Eberly B"

We report the first double-differential neutrino-argon cross section measurement made simultaneously for final states with and without protons for the inclusive muon neutrino charged-current interaction channel. The proton kinematics of this channel are further explored with a differential cross section measurement as a function of the leading proton's kinetic energy that extends across the detection threshold. These measurements use data collected with the MicroBooNE detector from 6.

View Article and Find Full Text PDF

We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2×10^{20} protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce π^{0} and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A^{'}.

View Article and Find Full Text PDF

We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ(1232).

View Article and Find Full Text PDF

We present the first search for heavy neutral leptons (HNLs) decaying into νe^{+}e^{-} or νπ^{0} final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab's main injector corresponding to a total exposure of 7.01×10^{20} protons on target.

View Article and Find Full Text PDF

We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects.

View Article and Find Full Text PDF

We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.

View Article and Find Full Text PDF

We present a search for eV-scale sterile neutrino oscillations in the MicroBooNE liquid argon detector, simultaneously considering all possible appearance and disappearance effects within the 3+1 active-to-sterile neutrino oscillation framework. We analyze the neutrino candidate events for the recent measurements of charged-current ν_{e} and ν_{μ} interactions in the MicroBooNE detector, using data corresponding to an exposure of 6.37×10^{20} protons on target from the Fermilab booster neutrino beam.

View Article and Find Full Text PDF

A 30-year-old female previously diagnosed with C-peptide (CP)-positive, autoantibody-negative type 1 diabetes mellitus (T1DM) at 19 years old presented to the clinic at age 28 for management of diabetes mellitus (DM) that had previously been controlled by insulin since diagnosis. Laboratory results from May 2011 showed low-normal C-peptide of 1 ng/mL (normal range: 0.8-4 ng/mL) with no corresponding glucose, glutamic acid decarboxylase (GAD)-65 antibody (GADA) of <1 U/mL (N<1.

View Article and Find Full Text PDF

We present a measurement of ν_{e} interactions from the Fermilab Booster Neutrino Beam using the MicroBooNE liquid argon time projection chamber to address the nature of the excess of low energy interactions observed by the MiniBooNE Collaboration. Three independent ν_{e} searches are performed across multiple single electron final states, including an exclusive search for two-body scattering events with a single proton, a semi-inclusive search for pionless events, and a fully inclusive search for events containing all hadronic final states. With differing signal topologies, statistics, backgrounds, reconstruction algorithms, and analysis approaches, the results are found to be either consistent with or modestly lower than the nominal ν_{e} rate expectations from the Booster Neutrino Beam and no excess of ν_{e} events is observed.

View Article and Find Full Text PDF

We report a measurement of the energy-dependent total charged-current cross section σ(E_{ν}) for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer (ν). Data corresponding to 5.3×10^{19} protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab booster neutrino beam with a mean neutrino energy of approximately 0.

View Article and Find Full Text PDF

We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8⟩  GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.

View Article and Find Full Text PDF

We present a search for the decays of a neutral scalar boson produced by kaons decaying at rest, in the context of the Higgs portal model, using the MicroBooNE detector. We analyze data triggered in time with the Fermilab NuMI neutrino beam spill, with an exposure of 1.93×10^{20} protons on target.

View Article and Find Full Text PDF

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{μ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{μ},μp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target.

View Article and Find Full Text PDF

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.

View Article and Find Full Text PDF

The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms.

View Article and Find Full Text PDF

Neutral-current production of K^{+} by atmospheric neutrinos is a background in searches for the proton decay p→K^{+}ν[over ¯]. Reactions such as νp→νK^{+}Λ are indistinguishable from proton decays when the decay products of the Λ are below detection threshold. Events with K^{+} are identified in MINERvA by reconstructing the timing signature of a K^{+} decay at rest.

View Article and Find Full Text PDF

The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π^{0} production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.

View Article and Find Full Text PDF

Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering.

View Article and Find Full Text PDF

The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{μ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments.

View Article and Find Full Text PDF

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{μ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations.

View Article and Find Full Text PDF

Neutrino-induced coherent charged pion production on nuclei νμA→μ(±)π(∓)A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. We select low |t| events to isolate a sample rich in coherent candidates.

View Article and Find Full Text PDF

We present measurements of ν(μ) charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2 View Article and Find Full Text PDF

We report a study of ν(μ) charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state.

View Article and Find Full Text PDF

We have isolated ν(μ) charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M(A), is set to 0.

View Article and Find Full Text PDF