Differing from the conventional peak-to-peak method using two neighboring spectral peaks in the frequency-domain fringe spectrum of the spectral response of a Fabry-Perot etalon to a femtosecond laser, which contains N spectral peaks equally spaced with a spacing of the etalon free spectral range (FSR), the proposed method employs a pair of spectral peaks with a spacing of an integer multiple k (k ≫ 1) of FSR for measurement of the etalon cavity length d with a reduced measurement error. Under the constrain of the total N spectral peaks obtainable in the finite spectral range of the femtosecond laser, the optimized k is identified to be N∕2 in consideration of an averaging operation using N - k samples of d to achieve the minimum measurement error. The feasibility of the proposed method is demonstrated by experimental results with an uncertainty analysis based on "Guides to the Expression of Uncertainty in Measurement".
View Article and Find Full Text PDFAn Atomic Force Microscope (AFM) is a powerful and versatile tool for nanoscale surface studies to capture 3D topography images of samples. However, due to their limited imaging throughput, AFMs have not been widely adopted for large-scale inspection purposes. Researchers have developed high-speed AFM systems to record dynamic process videos in chemical and biological reactions at tens of frames per second, at the cost of a small imaging area of up to several square micrometers.
View Article and Find Full Text PDFIn this contribution, we present a technique for in situ determination of the numerical apertures (NAs) of optical microscopes using calibrated diffraction gratings. Many commonly practiced procedures use an external setup to determine the objective and condenser NAs. However, these values may become modified in the used microscope systems, e.
View Article and Find Full Text PDFSince the turn of the millennium, the development and commercial availability of optical frequency combs has led to a steadily increase of worldwide installed frequency combs and a growing interest in using them for industrial-related metrology applications. Especially, GPS-referenced frequency combs often serve as a "self-calibrating" length standard for laser wavelength calibration in many national metrology institutes with uncertainties better than = 1 × 10. In this contribution, the application of a He-Ne laser source permanently disciplined to a GPS-referenced frequency comb for the interferometric measurements in a nanopositioning machine with a measuring volume of 200 mm × 200 mm × 25 mm (NPMM-200) is discussed.
View Article and Find Full Text PDFThis paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before.
View Article and Find Full Text PDFThe actual technical implementation of conventional interferometers is quite complex and requires manual manufacturing. In combination with the required construction space defined by the optical setup, their applications are limited to selected measuring tasks. In contrast, Standing Wave Interferometers (s) offer an enormous potential for miniaturisation because of their simple linear optical setup, consisting only of a laser source, a measuring mirror and two transparent standing wave sensors for obtaining quadrature signals.
View Article and Find Full Text PDFThe quality of processed workpieces is affected directly by the precision of the linear stage. Therefore, the linear displacement calibration of machine tools must be implemented before delivery and after employment for a period of time. How to perform a precise calibration with high inspection efficiency is a critical issue in the precision mechanical engineering industry.
View Article and Find Full Text PDFLayer-structured transition metal dichalcogenides (LS-TMDs) are being heavily studied in K-ion batteries (KIBs) owing to their structural uniqueness and interesting electrochemical mechanisms. Synthetic methods are designed primarily focusing on high capacities. The achieved performance is often the collective results of several contributing factors.
View Article and Find Full Text PDFThe use of the radiation pressure of a laser field, as an effect of the momentum transfer of the absorbed and re-emitted photons, suggests rather a complementary than an alternative possibility for metrology to generate calibration forces or to calibrate the optical power directly traceable to the International System of Units (SI). This paper reports a method and experimentally measured evidence on options to extend the effective use of radiation pressure for generating optical forces in the sub-microNewton (μN) range. Among other features and results presented, we emphasize the variability in controlling the accuracy of these forces through the proper utilization of the power of a multi-pass laser beam (semi- or completely) locked within confined systems.
View Article and Find Full Text PDFLaser interferometers have been widely implemented for the displacement sensing and positioning calibration of the precision mechanical industry, due to their excellent measuring features and direct traceability to the dimensional definition. Currently some kinds of modified Fabry-Perot interferometers with a planar mirror or a corner cube prism as the measurement mirror have been proposed. Each optical structure of both models has the individual particularity and performance for measuring applications.
View Article and Find Full Text PDFLaser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications.
View Article and Find Full Text PDF