Cytoskeleton (Hoboken)
May 2024
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes.
View Article and Find Full Text PDFBiochemical studies of human actin and its binding partners rely heavily on abundant and easily purified α-actin from skeletal muscle. Therefore, muscle actin has been used to evaluate and determine the activities of most actin regulatory proteins but there is an underlying concern that these proteins perform differently from actin present in non-muscle cells. To provide easily accessible and relatively abundant sources of human β- or γ-actin (i.
View Article and Find Full Text PDFDopaminergic pathways control highly consequential aspects of physiology and behavior. One of the most therapeutically important and best-studied receptors in these pathways is dopamine receptor D (DRD2). Unfortunately, DRD2 is challenging to study with traditional molecular biological techniques, and most drugs designed to target DRD2 are ligands for many other receptors.
View Article and Find Full Text PDFWe show here that both SHIP1 () and its paralog SHIP2 (1) are expressed at protein level in microglia. To examine whether targeting of SHIP paralogs might influence microglial physiology and function, we tested the capacity of SHIP1-selective, SHIP2-selective and pan-SHIP1/2 inhibitors for their ability to impact on microglia proliferation, lysosomal compartment size and phagocytic function. We find that highly potent pan-SHIP1/2 inhibitors can significantly increase lysosomal compartment size, and phagocytosis of dead neurons and amyloid beta (Aβ) by microglia We show that one of the more-potent and water-soluble pan-SHIP1/2 inhibitors, K161, can penetrate the blood-brain barrier.
View Article and Find Full Text PDFMammalian target of rapamycin (mTOR) enhances translation from a subset of messenger RNAs containing distinct 5'-untranslated region (UTR) sequence features. Here we identify 3'-UTR shortening of mRNAs as an additional molecular signature of mTOR activation and show that 3'-UTR shortening enhances the translation of specific mRNAs. Using genetic or chemical modulations of mTOR activity in cells or mouse tissues, we show that cellular mTOR activity is crucial for 3'-UTR shortening.
View Article and Find Full Text PDFResearchers are increasingly turning to label-free MS1 intensity-based quantification strategies within HPLC-ESI-MS/MS workflows to reveal biological variation at the molecule level. Unfortunately, HPLC-ESI-MS/MS workflows using these strategies produce results with poor repeatability and reproducibility, primarily due to systematic bias and complex variability. While current global normalization strategies can mitigate systematic bias, they fail when faced with complex variability stemming from transient stochastic events during HPLC-ESI-MS/MS analysis.
View Article and Find Full Text PDFAs the main catalytic and structural molecules within living systems, proteins are the most likely biomolecules to be affected by radiation exposure. Proteomics, the comprehensive characterization of proteins within complex biological samples, is therefore a research approach ideally suited to assess the effects of radiation exposure on cells and tissues. For comprehensive characterization of proteomes, an analytical platform capable of quantifying protein abundance, identifying post-translation modifications and revealing members of protein complexes on a system-wide level is necessary.
View Article and Find Full Text PDFWe have explored the use of electrostatic repulsion hydrophilic interaction chromatography (ERLIC) as an alternative to the gold-standard in shotgun proteomics: reversed-phase (RP) LC for online ESI-MS/MS. Conditions for sample solubilization and initial gradient conditions were optimized to strike a balance between peptide solubility and maximum peptide retention when using mobile phase with high organic solvent concentration. Online ERLIC-MS demonstrated a 57% increase in total peptide identifications compared to RP-MS.
View Article and Find Full Text PDFBackground: Proteomic studies in saliva have demonstrated its potential as a diagnostic biofluid, however the salivary peptidome is less studied. Here we study the effects of several sample collection and handling factors on salivary peptide abundance levels.
Methods: Salivary peptides were isolated using an ultrafiltration device and analyzed by tandem mass spectrometry.
Background: Oral cancer survival rates increase significantly when it is detected and treated early. Unfortunately, clinicians now lack tests which easily and reliably distinguish pre-malignant oral lesions from those already transitioned to malignancy. A test for proteins, ones found in non-invasively-collected whole saliva and whose abundances distinguish these lesion types, would meet this critical need.
View Article and Find Full Text PDFWhole human saliva possesses tremendous potential in clinical diagnostics, particularly for conditions within the oral cavity such as oral cancer. Although many have studied the soluble fraction of whole saliva, few have taken advantage of the diagnostic potential of the cells present in saliva, and none have taken advantage of proteomics capabilities for their study. We report on a novel proteomics method with which we characterized for the first time cells contained in whole saliva from patients diagnosed with oral squamous cell carcinoma.
View Article and Find Full Text PDFFluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power.
View Article and Find Full Text PDFThe use of light-emitting diodes (LEDs) for fluorescence detection has recently gained much interest. The broad wavelength emission of LEDs requires spectral filtering that is not necessary when using a laser. For instance, filtering the LED light using a bandpass filter improves the signal-to-background ratio for riboflavin by a factor of 70.
View Article and Find Full Text PDFTraditional protein labeling reactions for capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection suffer from a variety of disadvantages. The reactions can be nonquantitative on a reasonable time scale, require relatively high concentrations of protein and fluorophore, and can give multiple reaction products that can not be separated. Herein, we describe a new noncovalent labeling technique that is rapid, selective for myoglobin, and gives a simple reaction product.
View Article and Find Full Text PDF