Background: This report describes a novel cell-separation procedure developed to improve detection and analysis of rare human hematopoietic populations, obtained from NOD/SCID mice engrafted with normal and/or leukemic stem cells.
Methods: In preliminary experiments, artificial mixtures of murine and human BM cells were labeled with a combination of Abs specific for murine hematopoietic cells, prior to immunomagnetic negative selection using StemSep. In subsequent experiments, BM was harvested from individual NOD/SCID mice transplanted 6-12 weeks earlier with either human cord blood or primary CML cells and a similar immunomagnetic selection procedure was applied to enrich human cells present.
Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G(2)/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-beta(1) (TGF-beta(1)) and stroma-derived factor-1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin(-) cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor.
View Article and Find Full Text PDFRetroviral transduction of primary hematopoietic cells with human oncogenes provides a powerful approach to investigating the molecular mechanisms controlling the normal proliferation and differentiation of these cells. Here we show that primitive human CD34(+) cord blood cells, including multipotent as well as granulopoietic- and erythroid-restricted progenitors, can be efficiently transduced with a MSCV-BCR-ABL-IRES-GFP retrovirus, resulting in the sustained expression by their progeny of very high levels of tyrosine phosphorylated p210(BCR-ABL). Interestingly, even in the presence of growth factors that supported the exclusive production of granulopoietic cells from green fluorescent protein (GFP)-transduced control cells, BCR-ABL-transduced progenitor subpopulations generated large numbers of erythropoietin-independent terminally differentiating erythroid cells and reduced numbers of granulopoietic cells.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors.
View Article and Find Full Text PDFRetroviral transduction of hematopoietic stem cells (HSCs) offers an attractive strategy for treating malignancies that home to the marrow. This approach should therefore be of interest for evaluating the therapeutic activity of anti-angiogenic agents on hematopoietic malignancies whose growth has been associated with enhanced angiogenesis. A variety of studies have indicated endostatin to be a potent anti-angiogenic agent both in vitro and in vivo, and a human malignancy that might be sensitive to endostatin is human B-lineage acute lymphoblastic leukemia (B-ALL).
View Article and Find Full Text PDFStromal-derived factor 1 (SDF-1) is a -CXC- chemokine that plays a critical role in embryonic and adult hematopoiesis, and its specific receptor, CXCR4, has been implicated in stem cell homing. In this study, it is shown that the addition of SDF-1 to long-term cultures (LTCs) of normal human marrow can selectively, reversibly, and specifically block the S-phase entry of primitive quiescent erythroid and granulopoietic colony-forming cells (CFCs) present in the adherent layer. Conversely, addition of anti-SDF-1 antibody or SDF-1(G2), a specific CXCR4 antagonist, to preactivated human LTCs prevented both types of primitive CFCs from re-entering a quiescent state, demonstrating that endogenous SDF-1 contributes to the control of primitive CFC proliferation in the LTC system.
View Article and Find Full Text PDFThe last decade has seen major advances in our knowledge of the molecular control of hematopoiesis, widespread access to cytokines, and the development of practical assays for quantitating highly primitive hematopoietic cells. This progress has now made feasible the predictable manipulation of hematopoietic stem cells (HSC) and progenitors for a variety of experimental and clinical applications. Nevertheless, our understanding of events that induce and/ or block the differentiation of primitive hematopoietic cells is still very limited.
View Article and Find Full Text PDFIn designing functional assays for the various classes of hematopoietic cells described in this book, one needs to consider the properties of the cell to be measured which must be incorporated into the assay design, and the end points to allow its specific detection. The most primitive hematopoietic stem cells (HSC) in mouse and man are characterized by two cardinal properties that distinguish them from more mature clonogenic cells and their terminally differentiated progeny. Firstly, HSCs are pluripotent: they are characterized by the potential to differentiate into all of the eight major lineages of lymphoid, myeloid, and erythroid cells in vivo (1-3).
View Article and Find Full Text PDFIn normal adults, the majority of primitive hematopoietic cells are concentrated in the bone marrow, where they are in contact with a variety of molecules that influence their cell-cycle status, viability, motility, and differentiation. These include components of the extracellular matrix, soluble and bound growth-promoting factors and inhibitors, and adhesion molecules that mediate direct interactions between cells. The long-term culture (LTC) system initially developed to support the continued production of myeloid cells, (1-3) and subsequently for the production of lymphoid cells (4-7) has provided a unique approach for the investigation of the regulation and maintenance of early hematopoietic progenitors under conditions that reproduce many aspects of the marrow microenvironment.
View Article and Find Full Text PDFSickle cell disease (SCD) is caused by a single point mutation in the human betaA globin gene that results in the formation of an abnormal hemoglobin [HbS (alpha2betaS2)]. We designed a betaA globin gene variant that prevents HbS polymerization and introduced it into a lentiviral vector we optimized for transfer to hematopoietic stem cells and gene expression in the adult red blood cell lineage. Long-term expression (up to 10 months) was achieved, without preselection, in all transplanted mice with erythroid-specific accumulation of the antisickling protein in up to 52% of total hemoglobin and 99% of circulating red blood cells.
View Article and Find Full Text PDFCells with a verapamil-sensitive ability to efflux Hoechst 33342 (termed side population [SP] cells) have been identified in adult marrow from several species including humans and in several tissues from adult mice. In mice, the SP phenotype appears to be a common feature of stem cells, but human SP cells have been less well characterized. We show here, for the first time to our knowledge, that SP cells are present in the second-trimester human fetal liver.
View Article and Find Full Text PDFBreast Cancer Res Treat
May 2001
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted, myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM), alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18, keratin 19, EpCAM and MUC1.
View Article and Find Full Text PDFRecent studies with purified hematopoietic stem cells in vitro support a model of stem cell self-renewal control that involves distinct mechanisms regulating permissiveness to and execution of lineage restriction. Such a model predicts the existence of phenotypically separable populations of hematopoietic cells that are pluripotent and either capable or incapable of extensive self-renewal. Such populations have been previously described in the mouse.
View Article and Find Full Text PDFThe telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals.
View Article and Find Full Text PDFInt J Emerg Ment Health
July 2001
Traumatic events and subsequent crises within the school setting can have a devastating effect on students, faculty, staff and paebts. Crises serve to compromise the most important mission of the school, i.e.
View Article and Find Full Text PDFSeveral studies point to multiple members of the Hox transcription factor family as playing key roles in normal hematopoietic development, and they link the imbalanced expression of these transcription factors, in particular of the Abd-like A cluster HOX genes HOXA9 and HOXA10, to leukemogenesis. To test directly the hypothesis that HOXA10 is involved in human hematopoietic development, the gene was retrovirally overexpressed in human highly purified CD34(+)/GFP(+) hematopoietic progenitor cells derived from cord blood or fetal liver sources, and the impact of aberrant gene expression was analyzed on differentiation and proliferation in vitro and in vivo. HOXA10 misexpression profoundly impaired myeloid differentiation with a higher yield of blast cells in liquid culture and a greater than 100-fold increased generation of blast colonies after in vitro expansion or after replating of primary colonies first plated in methylcellulose directly after transduction (P < .
View Article and Find Full Text PDFPrevious studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3/flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit(+)Sca-1(+)lin(-) adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost.
View Article and Find Full Text PDFIncreasing use of purified or cultured human hematopoietic cells as transplants has revealed an urgent need for better methods to predict the speed and durability of their engraftment potential. We now show that NOD/SCID-beta2 microglobulin-null (NOD/SCID-beta2m-/-) mice are sequentially engrafted by two distinct and previously unrecognized populations of transplantable human short-term repopulating hematopoietic cells (STRCs), neither of which efficiently engraft NOD/SCID mice. One is predominantly CD34+CD38+ and is myeloid-restricted; the other is predominantly CD34+CD38- and has broader lymphomyeloid differentiation potential.
View Article and Find Full Text PDFIt was previously shown that patients with chronic myeloid leukemia (CML) have a rare but consistently detectable population of quiescent (G0) leukemic (Philadelphia chromosome-positive and BCR-ABL-positive [BCR-ABL+]) CD34+ cells. In the study described here, most such cells expressed a primitive phenotype (CD38-, CD45RA-, CD71-, and HLA-DR(lo)) and cultures of these cells containing growth factors produced ultimately larger, but initially more slowly growing clones than do cultures of initially cycling CD34+ leukemic cells. Initially quiescent leukemic cells expressing BCR-ABL proliferated in single-cell cultures in the absence of added growth factors, thereby demonstrating their ability to spontaneously exit G0 and enter a continuously cycling state.
View Article and Find Full Text PDFTo investigate whether haematopoietic stem cells in patients with sickle cell (SS) disease might be altered, we examined the number and cycling status of 5-week long-term culture-initiating cells (LTC-ICs) and in vitro multilineage colony-forming cells (CFCs) present in the blood of a large and clinically diverse group of SS patients. The concentrations of both of these cell types per ml of blood varied over a wide range in individual patients, but, on average, were significantly elevated above normal values ( approximately sevenfold and 15-fold respectively) and to an even greater extent than the lineage-restricted CFCs in the same samples. Wide variations in the concentration of circulating progenitors, particularly the LTC-ICs, were also seen over time (in concert with changes in the white blood cell count) in SS patients.
View Article and Find Full Text PDFAn understanding of mechanisms regulating hematopoietic stem cell engraftment is of pivotal importance to the clinical use of cultured and genetically modified transplants. Human cord blood (CB) cells with lymphomyeloid repopulating activity in NOD/SCID mice were recently shown to undergo multiple self-renewal divisions within 6 days in serum-free cultures containing Flt3-ligand, Steel factor, interleukin 3 (IL-3), IL-6, and granulocyte colony-stimulating factor. The present study shows that, on the fifth day, the transplantable stem cell activity is restricted to the G(1) fraction, even though both colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) in the same cultures are approximately equally distributed between G(0)/G(1) and S/G(2)/M.
View Article and Find Full Text PDFComparison of gene expression profiles in closely related subpopulations of primitive hematopoietic cells offers a powerful first step to elucidating the molecular basis of their different biologic properties. Here we present the results of a comparative quantitative analysis of transcript levels for various growth factor receptors, ligands, and transcription factor genes in CD34(+)CD38(-) and CD34(+)CD38(+) cells purified from first trimester human fetal liver, cord blood, and adult bone marrow (BM). In addition, adult BM CD34(+)CD38(-) cells were examined after short-term exposure to various growth factors in vitro.
View Article and Find Full Text PDFIn this study, it is shown that short-term exposure of normal human marrow CD34(+)CD38(-) cells to low concentrations of tumor necrosis factor (TNF) in the presence of 100 ng/mL Flt3 ligand and Steel factor and 20 ng/mL interleukin-3 (IL-3), IL-6, and granulocyte colony-stimulating factor, in either bulk or single-cell serum-free cultures, markedly reduces their ability subsequently to generate colony-forming cells (CFCs) in 6-week stromal cell-containing long-term cultures without affecting their viability, mitogenic response, or short-term ability to produce CFCs. A similar differential effect on the functional attributes of CD34(+)CD38(-) cells was seen when C2- or C6-ceramide, but not dihydro-C2-ceramide (an inactive analog of ceramide), was substituted for TNF. The addition of D-erythro-MAPP (a specific inhibitor of intracellular ceramide degradation) enhanced the ability of TNF to selectively eliminate long-term culture-initiating cell (LTC-IC) activity.
View Article and Find Full Text PDFTransplantable human hematopoietic stem cells (competitive repopulating units [CRU]) can be quantitated based on their ability to produce large populations of lymphoid and myeloid progeny within 6 weeks in the marrow of intravenously injected, sublethally irradiated NOD/SCID mice. It is shown that the proportions of total injected human fetal liver and cord blood CRU in the marrow of mice 24 hours after transplantation are 5% and 7%, respectively, as determined by limiting-dilution assays in other primary and secondary NOD/SCID mice. The similarity in these 2 seeding efficiency values suggests that mechanisms regulating the ability of human hematopoietic stem cells to enter the marrow from the blood, at least in this xenotransplant model, do not change between fetal life and birth.
View Article and Find Full Text PDFBone Marrow Transplant
September 2000
In this study, we investigated the homing and initiation of division of fluorescently labelled adult mouse bone marrow cells after their intravenous injection into lethally irradiated congenic mice. After 2 h, only 3% of the transplanted cells remained in the blood, and approximately 35% could be retrieved from the marrow, liver and spleen in approximately equal numbers. Subsequently, the proportion of injected cells found in blood, liver and spleen decreased further, but increased slightly (to approximately 17%) in the marrow.
View Article and Find Full Text PDF