Publications by authors named "Easwaramoorthi Ramasamy"

Single crystalline perovskite solar cells (PSC) are promising for their inherent stability due to the absence of grain boundaries. While the development of single crystals of perovskite with enhanced optoelectronic properties is known, studies on the growth, device performance and understanding of the intrinsic stability of single crystalline perovskite thin film solar cell devices fabricated on electron selective contacts are scarcely explored. In this work, we examine the impact of mesoporous TiO (m-TiO) and planar TiO (p-TiO) on the growth of single crystalline-methyl ammonium lead iodide (SC-MAPbI) film, PSC device performance and film stability under harsh weather conditions (T ∼ 85 °C and RH ∼ 85%).

View Article and Find Full Text PDF

A disulfide/thiolate (T(2)/T(-)) redox-couple electrolyte, which is a promising iodine-free electrolyte owing to its transparent and noncorrosive properties, requires alternative counter-electrode materials because conventional Pt shows poor catalytic activity in such an electrolyte. Herein, ordered mesoporous tungsten suboxide (m-WO(3-x)), synthesized by using KIT-6 silica as a hard template followed by a partial reduction, is used as a catalyst for a counter electrode in T(2)/T(-)-electrolyte-based dye-sensitized solar cells (DSCs). The mesoporous tungsten suboxide, which possesses interconnected pores of 4 and 20 nm, provides a large surface area and efficient electrolyte penetration into the m-WO(3-x) pores.

View Article and Find Full Text PDF

A novel rapid (∼10 min) microwave-hydrothermal synthesis is demonstrated for nanorice TiO(2) mesoparticles as an anode of a dye-sensitized solar cell with an excellent photovoltaic efficiency of above 8%.

View Article and Find Full Text PDF

Mesoporous tungsten carbides displayed an excellent solar conversion efficiency (7.01%) as a counter electrode for dye sensitized solar cells under 100 mW cm(-2), AM 1.5G illumination, which corresponded to ca.

View Article and Find Full Text PDF

We report the successful application of multiwall carbon nanotubes (CNTs) as electrocatalysts for triiodide reduction in a dye-sensitized solar cell (DSSC). Defect-rich edge planes of bamboolike-structure multiwall CNTs facilitate the electron-transfer kinetics at the counter electrode-electrolyte interface, resulting in low charge-transfer resistance and an improved fill factor. In combination with a dye-sensitized TiO2 photoanode and an organic liquid electrolyte, a multiwall CNT counter-electrode DSSC shows 7.

View Article and Find Full Text PDF

A counter-electrode comprised of large-pore sized mesoporous carbon exhibits low charge transfer resistance in iodide/triiodide redox electrolyte, thus liquid and quasi-solid dye sensitized solar cells show 8.18% and 3.61% solar to electric energy conversion efficiency, respectively.

View Article and Find Full Text PDF