Publications by authors named "Easterday W"

Heterogeneous aggregation of parasites between individual hosts is common and regarded as an important factor in understanding transmission dynamics of vector-borne diseases. Lyme disease is vectored by generalist tick species, yet we have a limited understanding of how individual heterogeneities within small mammal host populations affect the aggregation of ticks and likelihood of infection. Male hosts often have higher parasite and infection levels than females, but whether this is linked to sexual body size dimorphism remains uncertain.

View Article and Find Full Text PDF

Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil () is a rodent plague host with a heterogenic but highly resistant phenotype.

View Article and Find Full Text PDF

, the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole-genome sequence analysis of over 350 isolates was used to establish a new high-resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found.

View Article and Find Full Text PDF

, the etiological agent of anthrax, is a well-established model organism. For and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host-pathogen contacts at carcass sites, which can occur years after death of the previous host.

View Article and Find Full Text PDF

The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome.

View Article and Find Full Text PDF

Background: Emergence of tick-borne diseases is impacting humans and livestock across the Northern Hemisphere. There are, however, large regional variations in number of cases of tick-borne diseases. Some areas have surprisingly few cases of disease compared to other regions.

View Article and Find Full Text PDF

Environmentally transmitted diseases are comparatively poorly understood and managed, and their ecology is particularly understudied. Here we identify challenges of studying environmental transmission and persistence with a six-sided interdisciplinary review of the biology of anthrax (Bacillus anthracis). Anthrax is a zoonotic disease capable of maintaining infectious spore banks in soil for decades (or even potentially centuries), and the mechanisms of its environmental persistence have been the topic of significant research and controversy.

View Article and Find Full Text PDF

Background: Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B.

View Article and Find Full Text PDF

Bacillus anthracis strains K1 and K2 were isolated from two plains zebra anthrax carcasses in Etosha National Park, Namibia. These are draft genomes obtained by Illumina MiSeq sequencing of isolates collected from culture of blood-soaked soil from each carcass.

View Article and Find Full Text PDF

Global environmental changes are causing Lyme disease to emerge in Europe. The life cycle of Ixodes ricinus, the tick vector of Lyme disease, involves an ontogenetic niche shift, from the larval and nymphal stages utilizing a wide range of hosts, picking up the pathogens causing Lyme disease from small vertebrates, to the adult stage depending on larger (non-transmission) hosts, typically deer. Because of this complexity the role of different host species for emergence of Lyme disease remains controversial.

View Article and Find Full Text PDF

To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection.

View Article and Find Full Text PDF

The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries.

View Article and Find Full Text PDF

Background: Understanding the variation in prevalence of Borrelia burgdorferi sensu lato (Lyme Borreliosis Spirochaetes, LBS) and Anaplasma phagocytophilum (causing tick-borne fever in ruminants and human granulocytic ehrlichiosis) in ticks is vital from both a human and an animal disease perspective to target the most effective mitigation measures. From the host competence hypothesis, we predicted that prevalence of LBS would decrease with red deer density, while prevalence of A. phagocytophilum would increase.

View Article and Find Full Text PDF

Plague, caused by the bacterium Yersinia pestis, is a mammalian vector-borne disease, transmitted by fleas that serve as the vector between rodent hosts. For many pathogens, including Y. pestis, there are strong evolutionary pressures that lead to a reduction in 'useless genes', with only those retained that reflect function in the specific environment inhabited by the pathogen.

View Article and Find Full Text PDF

To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937-2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes.

View Article and Find Full Text PDF

Background: The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen.

View Article and Find Full Text PDF

Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely cryptic. Seven diverse B.

View Article and Find Full Text PDF

Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs.

View Article and Find Full Text PDF

A TaqMan allelic-discrimination assay designed around a synonymous single-nucleotide polymorphism was used to genotype Burkholderia pseudomallei and Burkholderia mallei isolates. The assay rapidly identifies and discriminates between these two highly pathogenic bacteria and does not cross-react with genetic near neighbors, such as Burkholderia thailandensis and Burkholderia cepacia.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) are increasingly recognized as important diagnostic markers for the detection and differentiation of Bacillus anthracis. The use of SNP markers for identifying B. anthracis DNA in environmental samples containing genetically similar bacteria requires the ability to amplify and detect DNA with single nucleotide specificity.

View Article and Find Full Text PDF
Article Synopsis
  • A TaqMan-minor groove binding assay was developed to identify a specific nonsense mutation in the plcR gene of Bacillus anthracis and its related species.
  • The assay successfully distinguished B. anthracis from B. cereus and B. thuringiensis isolates.
  • It revealed that the nonsense mutation is widely present in 89 diverse and global strains of B. anthracis.
View Article and Find Full Text PDF

The association of historical plague pandemics with Yersinia pestis remains controversial, partly because the evolutionary history of this largely monomorphic bacterium was unknown. The microevolution of Y. pestis was therefore investigated by three different multilocus molecular methods, targeting genomewide synonymous SNPs, variation in number of tandem repeats, and insertion of IS100 insertion elements.

View Article and Find Full Text PDF