Publications by authors named "Eamonn P Duffy"

Opioid Use Disorder (OUD) is an ongoing worldwide public health concern. Genetic factors contribute to multiple OUD-related phenotypes, such as opioid-induced analgesia, initiation of opioid use, and opioid dependence. Here, we present findings from a behavioral phenotyping protocol using male and female rats from 15 genetically diverse inbred strains from the Hybrid Rat Diversity Panel (HRDP).

View Article and Find Full Text PDF

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel.

View Article and Find Full Text PDF

Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments.

View Article and Find Full Text PDF

Abnormal levels of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) have been detected in various neurological disorders. The potent impact of FGF-FGFR in multiple embryonic developmental processes makes it challenging to elucidate their roles in postmitotic neurons. Taking an alternative approach to examine the impact of aberrant FGFR function on glutamatergic neurons, we generated a FGFR gain-of-function (GOF) transgenic mouse, which expresses constitutively activated FGFR3 (FGFR3) in postmitotic glutamatergic neurons.

View Article and Find Full Text PDF