Publications by authors named "Eamon McEvoy"

MEEKC is a mode of CE, which utilizes microemulsion (ME) as the BGE to achieve separation of a diverse range of analytes. MEs are composed of nanometer-sized oil droplets suspended in aqueous buffer which are stabilized by the presence of a surfactant and co-surfactant. These MEs are commonly referred to as oil-in-water MEs and their application in MEEKC has been extensively examined.

View Article and Find Full Text PDF

MEEKC is an electrodriven separation technique that utilises the unique properties of a microemulsion (ME) as a background electrolyte to achieve separation of a diverse range of solutes. MEs are composed of nanometre-sized oil droplets suspended in aqueous buffer, which is commonly referred to as oil-in-water ME. The droplets are stabilised by the presence of both a surfactant and co-surfactant.

View Article and Find Full Text PDF

MEEKC is an electrodriven separation technique. Oil-in-water microemulsions (MEs) and to a lesser extent water-in-oil MEs have been used in MEEKC as BGEs to achieve separation of a diverse range of solutes. The more common (oil-in-water) MEs are composed of nanometre-sized droplets of oil suspended in an aqueous buffer.

View Article and Find Full Text PDF

A rapid and efficient oil-in-water microemulsion liquid chromatographic method has been optimised and validated for the analysis of paracetamol in a suppository formulation. Excellent linearity, accuracy, precision and assay results were obtained. Lengthy sample pre-treatment/extraction procedures were eliminated due to the solubilising power of the microemulsion and rapid analysis times were achieved.

View Article and Find Full Text PDF

Microemulsion EKC (MEEKC) is an electrodriven separation technique. Separations are typically achieved using oil-in-water microemulsions, which are composed of nanometre-sized oil droplets suspended in an aqueous buffer. The droplets are stabilised by a surfactant and a cosurfactant.

View Article and Find Full Text PDF