The high power-conversion efficiencies of hybrid perovskite solar cells encourage many researchers. However, their limited photostability represents a serious obstacle to the commercialization of this promising technology. Herein, we present an efficient method for improving the intrinsic photostability of a series of commonly used perovskite material formulations such as MAPbI, FAPbI, CsFAPbI, and CsMAFAPbI through modification with octenidine dihydroiodide (), which is a widely used antibacterial drug with two substituted pyridyl groups and two cationic centers in its molecular framework.
View Article and Find Full Text PDFThe results of numerical SRIM and SCAPS calculations for the ionization, displacement and heating of hybrid perovskites under the influence of protons (E = 0.15, 3.0 and 18 MeV) are presented and show that the lowest transfer energy is demonstrated by the MAPbI, FAPbBr and FAPbI compounds, which represent the greatest potential for use as solar cells in space devices.
View Article and Find Full Text PDFThe growing demand for cheap, safe, recyclable, and environmentally friendly batteries highlights the importance of the development of organic electrode materials. Here, we present a novel redox-active polymer comprising a polyaniline-type conjugated backbone and quinizarin and anthraquinone units. The synthesized polymer was explored as a cathode material for batteries, and it delivered promising performance characteristics in both lithium and potassium cells.
View Article and Find Full Text PDFQuasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface.
View Article and Find Full Text PDFThis study is devoted to investigating the stability of metal-organic framework (MOF)-hybrid perovskites consisting of CHNHPbI (MAPbI) and UiO-66 without a functional group and UiO-66 with different COOH, NH,and F functional groups under external influences including heat, light, and humidity. By conducting crystallinity, optical, and X-ray photoelectron spectra (XPS) measurements after long-term aging, all of the prepared MAPbI3@UiO-66 nanocomposites (with pristine UiO-66 or UiO-66 with additional functional groups) were stable to light soaking and a relative humidity (RH) of 50%. Moreover, the UiO-66 and UiO-66-(F) hybrid perovskite films possessed a higher heat tolerance than the other two UiO-66 with the additional functional groups of NH and COOH.
View Article and Find Full Text PDFHerein, we report the nanoscale visualization of the photochemical degradation dynamics of MAPbI (MA = CHNH) using infrared scattering scanning near-field microscopy (IR s-SNOM) combined with a series of complementary analytical techniques such as UV-vis and FTIR-spectroscopy, XRD, and XPS. Light exposure of the MAPbI films resulted in a gradual loss of MA cations starting from the grain boundaries at the film surface and slowly progressing toward the center of the grains and deeper into the bulk perovskite phase. The binary lead iodide PbI was found to be the major perovskite photochemical degradation product under the experimental conditions used.
View Article and Find Full Text PDFWe report results of comprehensive experimental exploration (X-ray photoemission, Raman and optical spectroscopy) of carbon nanofibers (CNFs) in combination with first-principles modeling. Core-level spectra demonstrate prevalence of sp2 hybridization of carbon atoms in CNF with a trace amount of carbon-oxygen bonds. The density functional theory (DFT)-based calculations demonstrated no visible difference between mono- and bilayers because σ-orbitals are related to in-plane covalent bonds.
View Article and Find Full Text PDFRegardless of the impressive photovoltaic performances demonstrated for lead halide perovskite solar cells, their practical implementation is severely impeded by the low device stability. Complex lead halides are sensitive to both light and heat, which are unavoidable under realistic solar cell operational conditions. Suppressing these intrinsic degradation pathways requires a thorough understanding of their mechanistic aspects.
View Article and Find Full Text PDFHybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent.
View Article and Find Full Text PDFWe investigated the impact of a series of hole transport layer (HTL) materials such as Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), NiO, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and polytriarylamine (PTA) on photostability of thin films and solar cells based on MAPbI, CsFAPbI, CsMAFAPbI, CsMAFAPb(BrI), and CsFAPb(BrI) complex lead halides. Mixed halide perovskites showed reduced photostability in comparison with similar iodide-only compositions. In particular, we observed light-induced recrystallization of all perovskite films except MAPbI with the strongest effects revealed for Br-containing systems.
View Article and Find Full Text PDFIn this work, we report a comparative study of the gamma ray stability of perovskite solar cells based on a series of perovskite absorbers including MAPbI (MA = methylammonium), MAPbBr, CsFAPbI (FA = formamidinim), CsMAFAPbI, CsPbI, and CsPbBr We reveal that the composition of the perovskite material strongly affects the radiation stability of the solar cells. In particular, solar cells based on the MAPbI were found to be the most resistant to gamma rays since this perovskite undergoes rapid self-healing due to the special gas-phase chemistry analyzed with calculations. The fact that the solar cells based on MAPbI can withstand a 1000 kRad gamma ray dose without any noticeable degradation of the photovoltaic properties is particularly exciting and shifts the paradigm of research in this field toward designing more dynamic rather than intrinsically robust (e.
View Article and Find Full Text PDFWe report the application of a Ni-based coordination polymer derived from 1,2,4,5-tetraaminobenzene (P1) as a fast and stable potassium battery anode. In a voltage range of 0.5-2.
View Article and Find Full Text PDFWe report the first systematic assessment of intrinsic photothermal stability of a large panel of complex lead halides APbX incorporating different univalent cations (A = CHNH, [NHCHNH], Cs) and halogen anions (X = Br, I) using a series of analytical techniques such as UV-vis and X-ray photoelectron spectroscopy, X-ray diffraction, EDX analysis, atomic force and scanning electron microscopy, ESR spectroscopy, and mass spectrometry. We show that heat stress and light soaking induce a severe degradation of perovskite films even in the absence of oxygen and moisture. The stability of complex lead halides increases in the order MAPbBr < MAPbI < FAPbI < FAPbBr < CsPbI < CsPbBr, thus featuring all-inorganic perovskites as the most promising absorbers for stable perovskite solar cells.
View Article and Find Full Text PDFThermal effects in organo-metal halide perovskites are studied by ab initio molecular dynamics (MD) simulations performed at effective temperatures of 293 and 383 K and by X-ray photoelectron spectroscopy (XPS). We find that the cause of thermal instability in this class of perovskites is the rotation of the methylammonium (MA) groups that destroy the rigid lattice of pure compounds (MAPbI and MAPbBr). When the Pb-I lattice is initially distorted by partial replacement of the I with Cl or Br, this not only prevents formation of PbI seeds but also improves lattice flexibility and stability against the temperature-induced motion and rotation of MA groups.
View Article and Find Full Text PDFIn this study, we investigate the photo-/thermal degradation mechanism of hybrid perovskites by using x-ray photoelectron (XPS) valence band (VB) spectra coupling with density functional theory (DFT) calculations. Herein, CHNHPbI is respectively subjected to irradiation with visible light and annealing at an exposure of 0-1000 h. It is found from XPS survey spectra that, in both cases (irradiation and annealing), a decrease in the I:Pb ratio is observed with aging time, which unambiguously indicates the formation of PbI as the product of photo/thermal degradation.
View Article and Find Full Text PDFPolymeric aromatic amines were shown to be very promising cathodes for lithium-ion batteries. Surprisingly, these materials are scarcely used for designing post-lithium batteries. In this Letter, we investigate the application of the high-voltage poly(-phenyl-5,10-dihydrophenazine) (p-DPPZ) cathodes for K-ion batteries.
View Article and Find Full Text PDFX-ray and optical spectroscopies were applied in order to study the band structure and electronic excitations of the SiO /R O (R = Si, Al, Zr) suboxide superlattices. The complementary x-ray emission and absorption measurements allow for the band gap values for the SiO layers to be established, which are found to have almost no dependency on the cation type R. It is determined that, after annealing, the stoichiometric factor x remains near 1.
View Article and Find Full Text PDFDirectly measuring elementary electronic excitations in dopant 3d metals is essential to understanding how they function as part of their host material. Through calculated crystal field splittings of the 3d electron band it is shown how transition metals Mn, Fe, Co, and Ni are incorporated into SnO2. The crystal field splittings are compared to resonant inelastic X-ray scattering (RIXS) experiments, which measure precisely these elementary dd excitations.
View Article and Find Full Text PDFWe report on the impact of γ radiation (0-500 Gy) on triple-cation CsMAFAPb(BrI) perovskite solar cells. A set of experiments was designed to reveal the individual contributions of the hole-collecting bottom electrode, perovskite absorber, and electron transport layer (ETL) to the overall solar cell degradation under radiation exposure. We show that the glass/ITO/PEDOT:PSS hole-collecting electrode withstands a 500 Gy dose without any losses in the solar cell performance.
View Article and Find Full Text PDFSnO and Mn-doped SnO single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO QDs.
View Article and Find Full Text PDFWe demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface.
View Article and Find Full Text PDFWe present measurements of resistivity, x-ray absorption (XAS) and emission (XES) spectroscopy together with ab initio band structure calculations for quasi two dimensional ruthenate NaRuO. Density function calculations (DFT) and XAS and XES spectra both show that NaRuO is a semiconductor with an activation energy of ∼80 meV. Our DFT calculations reveal large magneto-elastic coupling in NaRuO and predict that the ground state of NaRuO should be antiferromagnetic zig-zag.
View Article and Find Full Text PDFTopological insulators have become one of the most prominent research topics in materials science in recent years. Specifically, BiTe is one of the most promising for technological applications due to its conductive surface states and insulating bulk properties. Herein, we contrast the bulk and surface structural environments of dopant ions Cr, Mn, Fe, Co, Ni, and Cu in BiTe thin films in order to further elucidate this compound.
View Article and Find Full Text PDFGraphene has attracted much attention as an impermeable membrane and a protective coating against oxidation. While many theoretical studies have shown that defect-free graphene is impermeable, in reality graphene inevitably has defects in the form of grain boundaries and vacancies. Here, we study the effects of N-dopants on the impermeability of few-layered graphene (FLG) grown on copper using chemical vapor deposition.
View Article and Find Full Text PDFWe report a careful and systematic study of thermal and photochemical degradation of a series of complex haloplumbates APbX (X = I, Br) with hybrid organic (A = CHNH) and inorganic (A = Cs) cations under anoxic conditions (i.e., without exposure to oxygen and moisture by testing in an inert glovebox environment).
View Article and Find Full Text PDF