Objectives: In Denmark, the use of bicycles is widespread, and head injuries are often seen in cyclists involved in collisions. Despite the well-known effects of using a helmet to reduce head injuries, using helmets is not mandatory in Denmark. The primary objective of this study was to provide data regarding injury outcomes and helmet usage.
View Article and Find Full Text PDFSelective activation of the M muscarinic acetylcholine receptor subtype offers a novel strategy for the treatment of psychosis in multiple neurological disorders. Although the development of traditional muscarinic activators has been stymied due to pan-receptor activation, muscarinic receptor subtype selectivity can be achieved through the utilization of a subtype of a unique allosteric site. A major challenge in capitalizing on this allosteric site to date has been achieving a balance of suitable potency and brain penetration.
View Article and Find Full Text PDFExposure to e-cigarette vapors alters important biologic processes including phagocytosis, lipid metabolism, and cytokine activity in the airways and alveolar spaces. Little is known about the biologic mechanisms underpinning the conversion to e-cigarette, or vaping, product use-associated lung injury (EVALI) from normal e-cigarette use in otherwise healthy individuals. We compared cell populations and inflammatory immune populations from bronchoalveolar lavage fluid in individuals with EVALI to e-cigarette users without respiratory disease and healthy controls and found that e-cigarette users with EVALI demonstrate a neutrophilic inflammation with alveolar macrophages skewed towards inflammatory (M1) phenotype and cytokine profile.
View Article and Find Full Text PDFThe right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations.
View Article and Find Full Text PDFExpression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing.
View Article and Find Full Text PDFCyclic AMP promotes EPAC1 and EPAC2 activation through direct binding to a specific cyclic nucleotide-binding domain (CNBD) within each protein, leading to activation of Rap GTPases, which control multiple cell responses, including cell proliferation, adhesion, morphology, exocytosis, and gene expression. As a result, it has become apparent that directed activation of EPAC1 and EPAC2 with synthetic agonists may also be useful for the future treatment of diabetes and cardiovascular diseases. To identify new EPAC agonists we have developed a fluorescent-based, ultra-high-throughput screening (uHTS) assay that measures the displacement of binding of the fluorescent cAMP analogue, 8-NBD-cAMP to the EPAC1 CNBD.
View Article and Find Full Text PDFKallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins. Aberrant expression of KLK6 has been found in different cancers and neurodegenerative diseases, and KLK6 is currently studied as a potential target in these pathologies. We report a novel series of KLK6 inhibitors discovered in a high-throughput screen within the European Lead Factory program.
View Article and Find Full Text PDFTOn October 30th, 2015, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 7th Annual Research Symposium. Dr. Breanne Everett, President and CEO of Orpyx Medical Technologies and holder both of medical and MBA degrees from the University of Calgary, presented a lecture entitled "Marrying Business and Medicine: Toe-ing a Fine Line".
View Article and Find Full Text PDFThe Leader in Medicine (LIM) Program of the Cumming School of Medicine, University of Calgary, hosted its 7th Annual LIM Research Symposium on October 30, 2015 and participation grew once again, with a total of six oral and 99 posters presentations! Over 45 of our Faculty members also participated in the symposium. This year's LIM Symposium theme was "Innovations in Medicine" and the invited guest speaker was our own Dr. Breanne Everett (MD/MBA).
View Article and Find Full Text PDFThe Great Migration and the Civil Rights Movement were two pivotal events experienced by the southern African American population during the 20th Century. Each has received considerable attention by social scientists and historians, and a possible connection between the two phenomena has been speculated. However, no systematic investigation of the effect of migration on protest during the Jim Crow era has been conducted.
View Article and Find Full Text PDFBackground: We sought to compare the sensitivity and specificity of 2 different caldesmon antibodies in differentiating leiomyosarcoma from other cutaneous spindle cell neoplasms.
Methods: Representative cutaneous spindle cell neoplasms were identified, including leiomyosarcoma, atypical fibroxanthoma, dermatomyofibroma and spindle cell squamous cell carcinoma. Immunohistochemistry was performed with antibodies directed toward caldesmon, smooth-muscle actin (SMA) and desmin.
A major challenge in the development of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer's disease is the alignment of potency, drug-like properties, and selectivity over related aspartyl proteases such as Cathepsin D (CatD) and BACE2. The potential liabilities of inhibiting BACE2 chronically have only recently begun to emerge as BACE2 impacts the processing of the premelanosome protein (PMEL17) and disrupts melanosome morphology resulting in a depigmentation phenotype. Herein, we describe the identification of clinical candidate PF-06751979 (64), which displays excellent brain penetration, potent in vivo efficacy, and broad selectivity over related aspartyl proteases including BACE2.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by accumulation of β-amyloid (Aβ) plaques and neurofibrillary tau tangles in the brain. β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a key role in the generation of Aβ fragments via extracellular cleavage of the amyloid precursor protein (APP). We became interested in developing a BACE1 PET ligand to facilitate clinical assessment of BACE1 inhibitors and explore its potential in the profiling and selection of patients for AD trials.
View Article and Find Full Text PDFMonoacylglycerol lipase (MAGL) is the main enzyme responsible for degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the CNS. MAGL catalyzes the conversion of 2-AG to arachidonic acid (AA), a precursor to the proinflammatory eicosannoids such as prostaglandins. Herein we describe highly efficient MAGL inhibitors, identified through a parallel medicinal chemistry approach that highlighted the improved efficiency of azetidine and piperidine-derived carbamates.
View Article and Find Full Text PDFAs part of our effort in identifying phosphodiesterase (PDE) 4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (B) and biodistribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study.
View Article and Find Full Text PDFA growing subset of β-secretase (BACE1) inhibitors for the treatment of Alzheimer's disease (AD) utilizes an anilide chemotype that engages a key residue (Gly230) in the BACE1 binding site. Although the anilide moiety affords excellent potency, it simultaneously introduces a third hydrogen bond donor that limits brain availability and provides a potential metabolic site leading to the formation of an aniline, a structural motif of prospective safety concern. We report herein an alternative aminomethyl linker that delivers similar potency and improved brain penetration relative to the amide moiety.
View Article and Find Full Text PDFInhibition of β-secretase BACE1 is considered one of the most promising approaches for treating Alzheimer's disease. Several structurally distinct BACE1 inhibitors have been withdrawn from development after inducing ocular toxicity in animal models, but the target mediating this toxicity has not been identified. Here we use a clickable photoaffinity probe to identify cathepsin D (CatD) as a principal off-target of BACE1 inhibitors in human cells.
View Article and Find Full Text PDFIn recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer's disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5.
View Article and Find Full Text PDFThe identification of centrally efficacious β-secretase (BACE1) inhibitors for the treatment of Alzheimer's disease (AD) has historically been thwarted by an inability to maintain alignment of potency, brain availability, and desired absorption, distribution, metabolism, and excretion (ADME) properties. In this paper, we describe a series of truncated, fused thioamidines that are efficiently selective in garnering BACE1 activity without simultaneously inhibiting the closely related cathepsin D or negatively impacting brain penetration and ADME alignment, as exemplified by 36. Upon oral administration, these inhibitors exhibit robust brain availability and are efficacious in lowering central Amyloid β (Aβ) levels in mouse and dog.
View Article and Find Full Text PDFExposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported following contact with bitumen on the ponds, but a new monitoring programme demonstrated that many thousands of birds land annually without apparent harm.
View Article and Find Full Text PDF