Near-surface or sub-surface pores are critical to the structural integrity of additively manufactured (AM) metal parts, especially in fatigue failure applications. However, their formation in laser powder bed fusion is not well-understood due to the complex processes happening near the surface, which are challenging to monitor. A lack of high-fidelity data hinders understanding of the process and its effects.
View Article and Find Full Text PDFA reconstruction algorithm for partially coherent x-ray computed tomography (XCT) including Fresnel diffraction is developed and applied to an optical fiber. The algorithm is applicable to a high-resolution tube-based laboratory-scale x-ray tomography instrument. The computing time is only a few times longer than the projective counterpart.
View Article and Find Full Text PDFThe multiscale Green's function method is extended to dual planar, two dimensional lattices and applied to calculate the lattice distortion and the strain field due to a vacancy in silicene. The method fully accounts for the discrete atomistic structure of the solid and links the atomistic and the macroscopic continuum scales seamlessly in the asymptotic limit.
View Article and Find Full Text PDFFeature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer.
View Article and Find Full Text PDFMeasuring the size distribution of the particles in a powder is a common activity in science and industry. Measuring the shape distribution of the particles is much less common. However, the shape and size of powder particles are not independent quantities.
View Article and Find Full Text PDFIn this work, we study the electromagnetic scattering characteristics of asymmetric carbon nanotube (CNT) dimers with rigorous computational experiments. We show that the configurational asymmetry in the CNT dimer assembly creates a unique field distribution in the vicinity of the dimer, which in turn generates two distinct resonances representing the bonding and anti-bonding modes. The sensitivity of these two modes towards CNT lengths, orientations, and shapes, is studied.
View Article and Find Full Text PDFThe relationship between real powder distributions and optical coupling is a critical building block for developing a deeper physical understanding of laser-additive manufacturing and for creating more reliable and accurate models for predictable manufacturing. Laser-light absorption by a metal powder is distinctly different from that of a solid material, as it is impacted by additional parameters, such as particle size, shape distribution, and packing. Here, we use x-ray computed tomography to experimentally determine these parameters in a thinly spread austenitic stainless-steel powder on a metal substrate, and we combine these results with optical absorptance measurements during a 1 ms stationary laser-light exposure to simulate the additive-manufacturing process.
View Article and Find Full Text PDFMaterial extrusion (MatEx) is finding increasing applications in additive manufacturing of thermoplastics due to the ease of use and the ability to process disparate polymers. Since part strength is anisotropic and frequently deviates negatively with respect to parts produced by injection molding, an urgent challenge is to predict final properties of parts made through this method. A nascent effort is underway to develop theoretical and computational models of MatEx part properties, but these efforts require comprehensive experimental data for guidance and validation.
View Article and Find Full Text PDFInsufficient data are available to fully understand the effects of metal additive manufacturing (AM) defects for widespread adoption of the emerging technology. Characterization of failure processes of complex internal geometries and defects in metal AM can significantly enhance this understanding. We aim to demonstrate a complete experimental measurement process and failure analysis method to study the effects of AM defects.
View Article and Find Full Text PDFX-ray computed tomography (XCT) is a promising nondestructive evaluation technique for additive manufacturing (AM) parts with complex shapes. Industrial XCT scanning is a relatively new development, and XCT has several acquisition parameters that a user can change for a scan whose effects are not fully understood. An artifact incorporating simulated defects of different sizes was produced using laser powder bed fusion (LPBF) AM.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
May 2019
This study evaluated different models for calculating the effective thermal conductivity of fibrous insulation by comparing predicted values with certified values of Standard Reference Material 1450c, Fibrous Glass Board. This comparison involved the coupled effects of radiation and conduction heat transfer. To support these comparisons, the fiber diameter distribution was measured using X-ray computed tomography, and this distribution was used in several heat transfer models considered in this paper.
View Article and Find Full Text PDFNovel material properties can be attained when embedding three-dimensional (3D) nanoparticles (NPs) in a variety of polymeric matrices. These inhomogeneities influence the bulk mechanical response due to the local high modulus mismatch between the particles and the matrix. The degree of the mechanical mismatch that is seen near a composite surface depends on the geometry/shape and spatial location and orientation of the particle with respect to the external contact loading.
View Article and Find Full Text PDFUsing a commercial X-ray tomography instrument, we have obtained reconstructions of a graded-index optical fiber with voxels of edge length 1.05 µm at 12 tube voltages. The fiber manufacturer created a graded index in the central region by varying the germanium concentration from a peak value in the center of the core to a very small value at the core-cladding boundary.
View Article and Find Full Text PDFLaser sintering (LS) of polyamide 12 (PA12) is increasingly being adopted for industrial production of end-use parts, yet the complexity of this process coupled with the lack of organized, rigorous, publicly available process-structure-physical property datasets exposes manufacturers and customers to risks of unacceptably poor part quality and high costs. Although an extensive scientific literature has been developed to address some of these concerns, results are distributed among numerous reports based on different machines, materials, process parameters, and users. In this study, a single commercially important LS PA12 feedstock has been processed along four build dimensions of a modern production LS machine, characterized by a wide range of physical techniques, and compared to the same material formed by conventional melt processing.
View Article and Find Full Text PDFPurpose: This paper lays the groundwork for linking Hounsfield unit measurements to the International System of Units (SI), ultimately enabling traceable measurements across X-ray CT (XCT) machines. We do this by characterizing a material basis that may be used in XCT reconstruction giving linear combinations of concentrations of chemical elements (in the SI units of mol/m3) which may be observed at each voxel. By implication, linear combinations not in the set are not observable.
View Article and Find Full Text PDFRecently, the National Institute of Standards and Technology has developed a database of three-dimensional (3D) stem cell morphologies grown in ten different scaffolds to study the effect of the cells' environments on their morphologies. The goal of this work is to study the polarizability tensors of these stem cell morphologies, using three independent computational techniques, to quantify the effect of the environment on the electric properties of these cells. We show excellent agreement between the three techniques, validating the accuracy of our calculations.
View Article and Find Full Text PDFThe viscoelastic/viscoplastic behavior of cement paste may occur due to intrinsic calcium silicate hydrate (C-S-H) viscoelasticity/viscoplasticity and cement grain dissolution during the hydration process. A numerical model that combines a microstructure model and a finite element calculation model has been developed to predict the time-dependent behavior of cementitious materials based on these two mechanisms, while incorporating C-S-H intrinsic aging. The simulation results from the model suggest that when considering C-S-H aging, the time-dependent properties of C-S-H are capable of generating the aging effect of cement paste, and can become a significant mechanism leading to the overall relaxation of cement paste.
View Article and Find Full Text PDFPowder quality in additive manufacturing (AM) electron beam melt (EBM) of Ti-6Al-4V components is crucial in determining the critical material properties of the end item. In this study, we report on the effect of powder oxidation on the Charpy impact energy of Ti-6Al-4V parts manufactured using EBM. In addition to oxidation, the effects on impact energy due to hot isostatic pressing (HIP), specimen orientation, and EBM process defects were also investigated.
View Article and Find Full Text PDFIEEE Trans Microw Theory Tech
November 2016
We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than -40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate.
View Article and Find Full Text PDFPore structures of additively manufactured metal parts were investigated with X-ray Computed Tomography (XCT). Disks made of a cobalt-chrome alloy were produced using laser-based powder bed fusion (PBF) processes. The additive manufacturing processing parameters (scan speed and hatch spacing) were varied in order to have porosities varying from 0.
View Article and Find Full Text PDFNear real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases.
View Article and Find Full Text PDFConstr Build Mater
October 2015
A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields.
View Article and Find Full Text PDFThe addition of carbon nanotubes (CNTs) and graphene sheets (GSs) into polymeric materials can greatly enhance the conductivity and alter the electromagnetic response of the resulting nanocomposite material. The extent of these property modifications strongly depends on the structural parameters describing the CNTs and GSs, such as their shape and size, as well as their degree of particle dispersion within the polymeric matrix. To model these property modifications in the dilute particle regime, we determine the leading transport virial coefficients describing the conductivity of CNT and GS composites using a combination of molecular dynamics, path-integral, and finite-element calculations.
View Article and Find Full Text PDFWith advances in anisotropic particle synthesis, particle shape is now a feasible parameter for tuning suspension properties. However, there is a need to determine how these newly synthesized particles affect suspension properties and a need to solve the inverse problem of inferring the particle shape from property measurements. Either way, accurate suspension property predictions are required.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
November 2015
Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process.
View Article and Find Full Text PDF