Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de novo haplotypes for diploid genomes.
View Article and Find Full Text PDFUsing five complementary short- and long-read sequencing technologies, we phased and assembled >95% of each diploid human genome in a four-generation, 28-member family (CEPH 1463) allowing us to systematically assess mutations (DNMs) and recombination. From this family, we estimate an average of 192 DNMs per generation, including 75.5 single-nucleotide variants (SNVs), 7.
View Article and Find Full Text PDFThe electron optical phase contrast probed by electron holography at n-n GaN doping steps is found to exhibit a giant enhancement, in sharp contrast to the always smaller than expected phase contrast reported for p-n junctions. We unravel the physical origin of the giant enhancement by combining off-axis electron holography data with self-consistent electrostatic potential calculations. The predominant contribution to the phase contrast is shown to arise from the doping dependent screening length of the surface Fermi-level pinning, which is induced by FIB-implanted carbon point defects below the outer amorphous shell.
View Article and Find Full Text PDFGenomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants.
View Article and Find Full Text PDFPurpose: This exploratory analysis evaluated the tumor samples of the patients treated with doxorubicin (with or without olaratumab) in a negative phase III ANNOUNCE trial to better understand the complexity of advanced soft tissue sarcomas (STS) and to potentially identify its predictive markers.
Experimental Design: RNA sequencing was performed on pretreatment tumor samples (n = 273) from the ANNOUNCE trial to evaluate response patterns and identify potential predictive treatment markers for doxorubicin. A BOR-associated signature to doxorubicin (REDSARC) was created by evaluating tumors with radiographic response versus progression.
Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale haplotypes for diploid genomes.
View Article and Find Full Text PDFAdvances in long-read sequencing (LRS) technologies continue to make whole-genome sequencing more complete, affordable, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs) associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the application of LRS.
View Article and Find Full Text PDFAs part of the non-clinical safety package characterizing bamlanivimab (SARS-CoV-2 neutralizing monoclonal antibody), the risk profile for antibody-dependent enhancement of infection (ADE) was evaluated in vitro and in an African green monkey (AGM) model of COVID-19. In vitro ADE assays in primary human macrophage, Raji, or THP-1 cells were used to evaluate enhancement of viral infection. Bamlanivimab binding to C1q, FcR, and cell-based effector activity was also assessed.
View Article and Find Full Text PDFThe broad application of precision cancer immunotherapies is limited by the number of validated neoepitopes that are common among patients or tumor types. To expand the known repertoire of shared neoantigen-human leukocyte antigen (HLA) complexes, we developed a high-throughput platform that coupled an in vitro peptide-HLA binding assay with engineered cellular models expressing individual HLA alleles in combination with a concatenated transgene harboring 47 common cancer neoantigens. From more than 24,000 possible neoepitope-HLA combinations, biochemical and computational assessment yielded 844 unique candidates, of which 86 were verified after immunoprecipitation mass spectrometry analyses of engineered, monoallelic cell lines.
View Article and Find Full Text PDFThe prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes.
View Article and Find Full Text PDFTruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation.
View Article and Find Full Text PDFFatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles.
View Article and Find Full Text PDFHere the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels.
View Article and Find Full Text PDFCurr Issues Mol Biol
March 2023
Phosphine is the most widely used fumigant for stored grains due to a lack of better alternatives, all of which have serious shortcomings that restrict their use. The extensive use of phosphine has led to the development of resistance among insect pests of grain, which threatens its status as a reliable fumigant. Understanding the mode of action of phosphine as well as its resistance mechanisms provides insight that may lead to improved phosphine efficacy and pest control strategies.
View Article and Find Full Text PDFPolypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH).
View Article and Find Full Text PDFGenome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as .
View Article and Find Full Text PDFPopulation annealing is a powerful sequential Monte Carlo algorithm designed to study the equilibrium behavior of general systems in statistical physics through massive parallelism. In addition to the remarkable scaling capabilities of the method, it allows for measurements to be enhanced by weighted averaging [J. Machta, Phys.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak.
View Article and Find Full Text PDFThe current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome.
View Article and Find Full Text PDFMetal oxide nanoparticles exhibit outstanding catalytic properties, believed to be related to the presence of oxygen vacancies at the particle's surface. However, little quantitative information is known about concentrations of point defects inside and at surfaces of these nanoparticles, due to the challenges in achieving an atomically resolved experimental access. By employing off-axis electron holography, we demonstrate, using MgO nanoparticles as an example, a methodology that discriminates between mobile charge induced by electron beam irradiation and immobile charge associated with deep traps induced by point defects as well as distinguishes between bulk and surface point defects.
View Article and Find Full Text PDF