Biofortification is the process that aims to enrich crops in micronutrients and valuable compounds. Selenium (Se) biofortification has particularly attracted increasing interest in recent times due to the growing number of individuals suffering from Se deficiency. Selenate and selenite are the Se forms most frequently administered to crops.
View Article and Find Full Text PDFEarlier studies have shown that Stanleya pinnata benefits from selenium hyperaccumulation through ecological benefits and enhanced growth. However, no investigation has assayed the effects of Se hyperaccumulation on plant fitness in the field. This research aimed to analyze how variation in Se accumulation affects S.
View Article and Find Full Text PDFThe aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops.
View Article and Find Full Text PDFPremise: The ecological implications of hyperaccumulation have been investigated at the organismal level, but are poorly understood at the plant community level. Questions addressed here were: Does the presence of selenium (Se) hyperaccumulators affect Se distribution and concentration in their native soil, and do hyperaccumulators affect overall vegetation properties and species composition?
Methods: Plant survey and soil Se mapping were performed at three seleniferous sites in Colorado. In season one, plots with and without hyperaccumulators were compared for (1) bare ground, canopy cover, and species richness; (2) relative species abundance; (3) soil Se distribution and concentration.
Selenium (Se) deficiency and toxicity affect over a billion people worldwide. Plants can mitigate both problems, via Se biofortification and phytoremediation. Here we explore the potential of hemp ( L.
View Article and Find Full Text PDFSelenium (Se), a trace element essential for human and animal biological processes, is deficient in many agricultural soils. Some extremely rare plants can naturally accumulate extraordinarily high concentrations of Se. The native legume Neptunia amplexicaulis, endemic to a small area near Richmond and Hughenden in Central Queensland, Australia, is one of the strongest Se hyperaccumulators known on Earth, with foliar concentrations in excess of 4000 μg Se g previously recorded.
View Article and Find Full Text PDFIn these studies we identified and compared the properties of plant species that showed positive or negative co-occurrence with selenium (Se) hyperaccumulators in their natural habitat. The main questions addressed were: which species are most abundant directly adjacent to hyperaccumulators, and which are absent? How do Se accumulation and tolerance compare in species found to positively or negatively co-occur with hyperaccumulators? Approaches included field surveys, X-ray microprobe analysis of field samples, and a lab Se tolerance and accumulation study. When 54 hyperaccumulators across two naturally seleniferous sites were surveyed for their five nearest neighboring species, and the relative abundance of these species around hyperaccumulators compared to that in the overall vegetation, some species were identified to positively or negatively co-occur with hyperaccumulators.
View Article and Find Full Text PDFCardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine.
View Article and Find Full Text PDFMore than a billion people worldwide may be selenium (Se) deficient, and supplementation with Se-rich Brazil nuts may be a good strategy to prevent deficiency. Since different forms of Se have different nutritional value, and Se is toxic at elevated levels, careful seed characterization is important. Variation in Se concentration and correlations of this element with other nutrients were found in two batches of commercially available nuts.
View Article and Find Full Text PDFPlants accumulate and tolerate Se to varying degrees, up to 15,000 mg Se/kg dry weight for Se hyperaccumulators. Plant Se accumulation may exert positive or negative effects on other species in the community. The movement of plant Se into ecological partners may benefit them at low concentrations, but cause toxicity at high concentrations.
View Article and Find Full Text PDFBiofortification can be exploited to enrich plants in selenium (Se), an essential micronutrient for humans. Selenium as selenate was supplied to two rocket species, Mill. (salad rocket) and (wild rocket), at 0⁻40 μM in hydroponics and its effects on the content and profile of sulphur (S)-compounds and other phytochemicals was evaluated.
View Article and Find Full Text PDFBuckwheat is an important crop species in areas of selenium (Se) deficiency. To obtain better insight into their Se metabolic properties, common buckwheat () and tartary buckwheat () were supplied with different concentrations of Se, supplied as selenate, selenite, or plant extract (methyl-selenocysteine). Se was supplied at different developmental stages, with different durations, and in the presence or absence of potentially competing ions, sulfate, and phosphate.
View Article and Find Full Text PDFEndophytes can enhance plant stress tolerance by promoting growth and affecting elemental accumulation, which may be useful in phytoremediation. In earlier studies, up to 35% elemental selenium (Se) was found in Se hyperaccumulator . Since Se can be produced by microbes, the plant Se was hypothesized to be microbe-derived.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2018
Background: Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2018
Background: Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.
View Article and Find Full Text PDFBackground: The plant Stanleya pinnata hyperaccumulates Se up to 0.5% of its dry weight in organic forms, whereas the closely related Stanleya elata does not hyperaccumulate Se. ATP sulfurylase (ATPS) can catalyze the formation of adenosine 5'-phosphoselenate (APSe) from ATP and selenate.
View Article and Find Full Text PDFTo obtain better insight into the mechanisms of selenium hyperaccumulation in Stanleya pinnata, transcriptome-wide differences in root and shoot gene expression levels were investigated in S. pinnata and related nonaccumulator Stanleya elata grown with or without 20 μm selenate. Genes predicted to be involved in sulphate/selenate transport and assimilation or in oxidative stress resistance (glutathione-related genes and peroxidases) were among the most differentially expressed between species; many showed constitutively elevated expression in S.
View Article and Find Full Text PDFStanleya pinnata not only hyperaccumulates selenium (Se) to 0.5% of its dry weight, but also exhibits higher tissue Se-to-sulfur (S) ratios than other species and its surroundings. To investigate the mechanisms underlying this Se enrichment, we compared S.
View Article and Find Full Text PDFJ Environ Qual
January 2017
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water.
View Article and Find Full Text PDFTwo selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7 days before harvest at 0, 5, 10, and 20 mg Se per plant. Selenium levels were up to 1200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots.
View Article and Find Full Text PDFThe capacity of Ulva australis Areschoug to tolerate and accumulate selenium (Se) supplied in the form of selenate or selenite was investigated. The macroalga was provided for 3 and 7 days with concentrations of selenate (Na2SeO4) or selenite (Na2SeO3) ranging from 0 to 400 μM. U.
View Article and Find Full Text PDFPseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO3(2-) in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell.
View Article and Find Full Text PDFSome species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo).
View Article and Find Full Text PDFSelenium (Se) is an essential micronutrient for humans and animals, and Se deficiency is a worldwide problem. Plants are a main dietary source of Se for humans and livestock. In this study we investigated the effect of two selenium-tolerant bacterial strains Bacillus cereus-YAP6 and Bacillus licheniformis-YAP7, on the growth and Se uptake by wheat plants.
View Article and Find Full Text PDF