Publications by authors named "EA Khval'kovskaya"

Mössbauer spectra of chloroplasts isolated from spinach plants grown in a mineral medium enriched with 57Fe and Mössbauer spectra of native membranes of the thermophilic cyanobacterium Synechococcus elongatus contain a broad asymmetric doublet typical of the iron-sulfur proteins of Photosystem (PS) I. Exposure of chloroplasts to temperatures of 20-70 degrees C significantly modifies the central part of the spectra. This spectral change is evidence of decreased magnitude of the quadrupole splitting.

View Article and Find Full Text PDF

A model description of the Mössbauer spectrum (80 K) of native membranes of the thermophilic cyanobacterium Synechococcus elongatus is suggested on the basis of the known values of quadrupole splitting (deltaE(Q)) and isomer shift (deltaFe) for the iron-containing components of the photosynthetic apparatus. Using this approach, we found that heating the membranes at 70-80 K results in a decrease of doublet amplitudes belonging to F(X), F(A), F(B) and ferredoxin and simultaneous formation of a new doublet with deltaE(Q) = 3.10 mm/s and delta-Fe = 1.

View Article and Find Full Text PDF

A mathematical model of the Mossbauer spectrum (80K) of native membranes of Synechococcus elongatus was constructed on the basis of values of the quadruple splitting (Delta) and the isomeric shift (delta) of the iron-containing components of the photosynthetic apparatus obtained from the literature. Thermally induced changes in the intensity of the spectral components of membranes and isolated preparations of photosystem (PS) I were studied using this model. It was shown that exposure of membranes to 70-80 degrees C causes a decrease in the intensity of the components related to the FX, FA, and FB centers and surface-located ferredoxins of PS I, an increase in the intensity of the doublets of oxidized iron clusters that are nonspecifically absorbed by the membranes, and formation of a new doublet.

View Article and Find Full Text PDF