Publications by authors named "E-Wen Huang"

This work applied three machine learning (ML) models-linear regression (LR), random forest (RF), and support vector regression (SVR)-to predict the lattice parameters of the monoclinic B19' phase in two distinct training datasets: previously published ZrO-based shape-memory ceramics (SMCs) and NiTi-based high-entropy shape-memory alloys (HESMAs). Our findings showed that LR provided the most accurate predictions for a, a, b, and c in NiTi-based HESMAs, while RF excelled in computing β for both datasets. SVR disclosed the largest deviation between the predicted and actual values of lattice parameters for both training datasets.

View Article and Find Full Text PDF

Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised two primary stages.

View Article and Find Full Text PDF

To minimize the stress shielding effect of metallic biomaterials in mimicking bone, the body-centered cubic (bcc) unit cell-based porous CoCrMo alloys with different, designed volume porosities of 20, 40, 60, and 80% were produced via a selective laser melting (SLM) process. A heat treatment process consisting of solution annealing and aging was applied to increase the volume fraction of an ε-hexagonal close-packed (hcp) structure for better mechanical response and stability. In the present study, we investigated the impact of different, designed volume porosities on the compressive mechanical properties in as-built and heat-treated CoCrMo alloys.

View Article and Find Full Text PDF

The fabrication with high energy density and superior electrical/electrochemical properties of hierarchical porous 3D cross-linked graphene-based supercapacitors is one of the most urgent challenges for developing high-power energy supplies. We facilely synthesized a simple, eco-friendly, cost-effective heteroatoms (nitrogen, phosphorus, and fluorine) co-doped graphene oxide (NPFG) reduced by hydrothermal functionalization and freeze-drying approach with high specific surface areas and hierarchical pore structures. The effect of different heteroatoms doping on the energy storage performance of the synthesized reduced graphene oxide is investigated extensively.

View Article and Find Full Text PDF

This study develops and successfully demonstrates visualization methods for the characterization of europium (Eu)-doped BaAlO phosphors using X-ray nanoprobe techniques. X-ray fluorescence (XRF) mapping not only gives information on the elemental distributions but also clearly reveals the valence state distributions of the Eu and Eu ions. The accuracy of the estimated valence state distributions was examined by performing X-ray absorption spectroscopy (XAS) across the Eu L-edge (6.

View Article and Find Full Text PDF

In this study, we manufactured a non-equiatomic (CoNi)CrFeC high-entropy alloy (HEA) consisting of a single-phase face-centered-cubic structure. We applied in situ neutron diffraction coupled with electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) to investigate its tensile properties, microstructural evolution, lattice strains and texture development, and the stacking fault energy. The non-equiatomic (CoNi)CrFeC HEA revealed a good combination of strength and ductility in mechanical properties compared to the equiatomic CoNiCrFe HEA, due to both stable solid solution and precipitation-strengthened effects.

View Article and Find Full Text PDF

The present work extends the examination of selective laser melting (SLM)-fabricated 15-5 PH steel with the 8%-transient-austenite-phase towards fully-reversed strain-controlled low-cycle fatigue (LCF) test. The cyclic-deformation response and microstructural evolution were investigated via in-situ neutron-diffraction measurements. The transient-austenite-phase rapidly transformed into the martensite phase in the initial cyclic-hardening stage, followed by an almost complete martensitic transformation in the cyclic-softening and steady stage.

View Article and Find Full Text PDF

Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate their mechanical properties with respect to their constituents. Compared with two single and the other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows a more prominent mechanical anisotropy between revolving direction (RD) and cross direction (CD) associated with improved resistance to tensile stress for the crystallite phase stability and good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber alignment and the crystalline/amorphous ratio.

View Article and Find Full Text PDF

We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two specific microalloying stoichiometries were reported, namely biodegradable iron powder with 99.

View Article and Find Full Text PDF

The coaxial core/shell composite electrospun nanofibers consisting of relaxor ferroelectric P(VDF-TrFE-CTFE) and ferroelectric P(VDF-TrFE) polymers are successfully tailored towards superior structural, mechanical, and electrical properties over the individual polymers. The core/shell-TrFE/CTFE membrane discloses a more prominent mechanical anisotropy between the revolving direction (RD) and cross direction (CD) associated with a higher tensile modulus of 26.9 MPa and good strength-ductility balance, beneficial from a better degree of nanofiber alignment, the increased density, and C-F bonding.

View Article and Find Full Text PDF

thermal cycling neutron diffraction experiments were employed to unravel the effect of thermal history on the evolution of phase stability and internal stresses during the additive manufacturing (AM) process. While the fully-reversible martensite-austenite phase transformation was observed in the earlier thermal cycles where heating temperatures were higher than A, the subsequent damped thermal cycles exhibited irreversible phase transformation forming reverted austenite. With increasing number of thermal cycles, the thermal stability of the retained austenite increased, which decreased the coefficient of thermal expansion.

View Article and Find Full Text PDF

In this study, we optimized the geometry and composition of additive-manufactured pedicle screws. Metal powders of titanium-aluminum-vanadium (Ti-6Al-4V) were mixed with reactive glass-ceramic biomaterials of bioactive glass (BG) powders. To optimize the geometry of pedicle screws, we applied a novel numerical approach to proposing the optimal shape of the healing chamber to promote biological healing.

View Article and Find Full Text PDF

The deformations of isotropic and anisotropic Ti-6Al-4V columnar structures fabricated by additive manufacturing were extensively examined. The distinct texture and microstructure distributions were characterised. X-ray diffraction measurements show different lattice activities resulting from the different microstructure distributions.

View Article and Find Full Text PDF

Background: Tooth morphology within theropod dinosaurs has been extensively investigated and shows high disparity throughout the Cretaceous. Changes or diversification in feeding ecology, i.e.

View Article and Find Full Text PDF

We applied Simmons-Balluffi methods, positron measurements, and neutron diffraction to estimate the vacancy of CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) using Cu as a benchmark. The corresponding formation enthalpies and associated entropies of the HEAs and Cu were calculated. The vacancy-dependent effective free volumes in both CoCrFeNi and CoCrFeMnNi alloys are greater than those in Cu, implying the easier formation of vacancies by lattice structure relaxation of HEAs at elevated temperatures.

View Article and Find Full Text PDF

This study inspected whether calcitriol could exert a mineralization-inductive effect comparable to that of vitamin C in cultured human periodontium cells (hPDCs). The mRNA expression of the mineralization-related biomarkers core-binding factor subunit alpha-1 (Cbfa1), collagen 1 α1 (Col-I), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), osteocalcin (OCN), vitamin D receptor (VDR), cementum protein 1 (CEMP-1), cementum attachment protein (CAP), interleukin 6 (IL-6), transforming growth factor-β1 (TGF-β1) and osteoprotegerin (OPG) was surveyed after incubation of hPDCs with vitamin C and calcitriol for 2 weeks. Translational expression information from ALP activity and CEMP-1 and CAP immunofluorescence assays was acquired from hPDCs at the second and third weeks.

View Article and Find Full Text PDF

In this study, we demonstrate the fabrication of Y-doped bioactive glass (BG), which is proposed as a potential material for selective internal radiotherapy applications. Owing to its superior bioactivity and biodegradability, it overcomes the problem of yttrium aluminosilicate spheres that remain in the host body for a long duration after treatment. The preparation of Y-doped BG powders were carried out using a spray pyrolysis method.

View Article and Find Full Text PDF

Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size-strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensity values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect.

View Article and Find Full Text PDF

In situ synchrotron X-ray diffraction is used to investigate a three-way piezo-phototronic soft material. This new system is composed of a semi-crystalline poly(vinylidene fluoride-co-trifluoroethylene) piezoelectric polymer and titanium oxide nanoparticles. Under light illumination, photon-induced piezoelectric responses are nearly two times higher at both the lattice-structure and the macroscopic level than under conditions without light illumination.

View Article and Find Full Text PDF

The structures of C- and N-terminally monoPEGylated human parathyroid hormone fragment hPTH(1-34) as well as their unmodified counterparts, poly(ethylene glycol) (PEG) and hPTH(1-34), have been studied by small-angle neutron scattering (SANS). The scattering results show that free hPTH(1-34) in 100 mM phosphate buffer (pH 7.4) aggregates into clusters.

View Article and Find Full Text PDF

In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) at various molecular weights (MWs) has been regarded as a wonder molecule in biomedical applications. For instance, PEG serves as a unique moiety for pegylation of "biobetter" drug development, PEG provides controlled-release and preserved activity of biologics, and PEG modified surface works as an antibiofouling surface. The primary characteristics of PEG molecules used in relevant applications have been attributed mainly to the hydration behavior in aqueous solutions.

View Article and Find Full Text PDF