Publications by authors named "E-Jen Teh"

Smooth Zinc Sulphide (ZnS) surfaces were prepared by magnetron sputtering and the interaction forces were measured between them as a function of pH. At the isoelectric point (iep) of pH 7.1 the attractive force was well described by the van der Waals interaction calculated using Lifshitz theory for a layered system.

View Article and Find Full Text PDF

The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface.

View Article and Find Full Text PDF

The surface forces and yield stress of titanium dioxide were measured in the presence of dicarboxylic acids in order to understand the molecular basis for the observed rheological response. The yield stress was measured using the static vane technique, and the surface forces were characterized using an atomic force microscope. The trans and cis isomers of butenedioic acid (fumaric and maleic acids, respectively) were chosen as the relative orientation of the carboxylic groups differs substantially.

View Article and Find Full Text PDF

Low molecular weight benzenedicarboxylic acid has a very well-defined molecular structure because of its rigid and planar backbone. Therefore, it is hypothesized to have high potential for highly directed bridging between surfaces. However, phthalic acid cannot participate in particle bridging because the two carboxylic acid groups on the benzene ring are located adjacent to each other which prevent the molecule from bridging between two surfaces.

View Article and Find Full Text PDF

Adsorbed low molecular weight charged molecules are known to give rise to a range of surface forces that affect the rheological behavior of oxide dispersions. The behavior of dicarboxylic acid bolaform compounds in alumina slurry was investigated to determine the influence of the molecular structure on the nanoscale interactions between alumina surfaces and on the macroscopic properties of the slurry. The surface forces in dispersions and between a single particle and a flat surface were characterized by yield stress and atomic force microscopy (AFM) respectively.

View Article and Find Full Text PDF

Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles.

View Article and Find Full Text PDF