Publications by authors named "E van Faassen"

Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins.

View Article and Find Full Text PDF

Cyanotoxins are a diverse group of bioactive compounds produced by cyanobacteria that have adverse effects on human and animal health. While the phenomenon of cyanotoxin production in aquatic environments is well studied, research on cyanotoxins in terrestrial environments, where cyanobacteria abundantly occur in biocrusts, is still in its infancy. Here, we investigated the potential cyanotoxin production in cyanobacteria-dominated biological loess crusts (BLCs) from three different regions (China, Iran, and Serbia) and in cyanobacterial cultures isolated from the BLCs.

View Article and Find Full Text PDF

Phycotoxins occur in various marine and freshwater environments, and can accumulate in edible species such as fish, crabs, and shellfish. Human exposure to these toxins can take place, for instance, through consumption of contaminated species or supplements and through the ingestion of contaminated water. Symptoms of phycotoxin intoxication include paralysis, diarrhea, and amnesia.

View Article and Find Full Text PDF

Chitosan has been tested as a coagulant to remove cyanobacterial nuisance. While its coagulation efficiency is well studied, little is known about its effect on the viability of the cyanobacterial cells. This study aimed to test eight strains of the most frequent bloom-forming cyanobacterium, , exposed to a realistic concentration range of chitosan used in lake restoration management (0 to 8 mg chitosan L).

View Article and Find Full Text PDF

Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filament length: short vs.

View Article and Find Full Text PDF