Publications by authors named "E de Coulon"

Volcano-shaped microelectrodes (nanovolcanoes) functionalized with nanopatterned self-assembled monolayers have recently been demonstrated to report cardiomyocyte action potentials after gaining spontaneous intracellular access. These nanovolcanoes exhibit recording characteristics similar to those of state-of-the-art micro-nanoelectrode arrays that use electroporation as an insertion mechanism. In this study, we investigated whether the use of electroporation improves the performance of nanovolcano arrays in terms of action potential amplitudes, recording durations, and yield.

View Article and Find Full Text PDF

A comprehensive understanding of mechano-electrical coupling requires continuous intracellular electrical recordings being performed on cells undergoing simultaneously like strain events. Here, we introduce a linear strain single-cell electrophysiology (LSSE) system that meets these requirements by delivering highly reproducible unidirectional strain events with magnitudes up to 12% and strain rates exceeding 200%s to adherent cells kept simultaneously in whole-cell patch-clamp recording configuration. Proof-of-concept measurements with NIH3T3 cells demonstrate that stable recording conditions are maintained over tens of strain cycles at maximal amplitudes and strain rates thereby permitting a full electrophysiological characterization of mechanically activated ion currents.

View Article and Find Full Text PDF

Atomic force microscopy based approaches have led to remarkable advances in the field of mechanobiology. However, linking the mechanical cues to biological responses requires complementary techniques capable of recording these physiological characteristics. In this study, we present an instrument for combined optical, force, and electrical measurements based on a novel type of scanning probe microscopy cantilever composed of a protruding volcano-shaped nanopatterned microelectrode (nanovolcano probe) at the tip of a suspended microcantilever.

View Article and Find Full Text PDF

Micronanotechnology-based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recording of excitable cells. However, providing long-term optoporation- or electroporation-free intracellular access remains a considerable challenge. In this study, a novel type of nanopatterned volcano-shaped microelectrode (nanovolcano) is described that spontaneously fuses with the cell membrane and permits stable intracellular access.

View Article and Find Full Text PDF

Systematic investigations of the effects of mechano-electric coupling (MEC) on cellular cardiac electrophysiology lack experimental systems suitable to subject tissues to in-vivo like strain patterns while simultaneously reporting changes in electrical activation. Here, we describe a self-contained motor-less device (mechano-active multielectrode-array, MaMEA) that permits the assessment of impulse conduction along bioengineered strands of cardiac tissue in response to dynamic strain cycles. The device is based on polydimethylsiloxane (PDMS) cell culture substrates patterned with dielectric actuators (DEAs) and compliant gold ion-implanted extracellular electrodes.

View Article and Find Full Text PDF